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Introduction

This book is based on talks delivered at the 2nd Weiglhofer Symposium on
Electromagnetic Theory. The symposium was dedicated to the memory of Werner
Siegfried Weiglhofer, formerly Professor of Applied Mathematics at the University
of Glasgow, who died in January 2003 in a mountaineering accident in Norway
(Fig. 1).

The 1st Weiglhofer Symposium on Electromagnetic Theory was held in July
2022 in Edinburgh, Scotland. A book comprising talks delivered at that symposium
was published the following year [1].

The 2nd Weiglhofer Symposium, held in Cetara, Italy, was coordinated by the
two of us. Francesco is Professor of Optics, Department of Industrial Engineering,
University of Salerno, and Vincenzo is Professor of Electromagnetics, Department
of Engineering, University of Basilicata. Although not having worked directly
with Prof. Weiglhofer, both of us have deeply appreciated and capitalized on his
pioneering work on theoretical electromagnetics of complex materials.

Twenty-two papers on cutting-edge topics of electromagnetic theory and appli-
cations were presented at the 2nd Weiglhofer Symposium by researchers from 13
different countries (Fig. 2).

This book consists of 16 chapters showcasing significant recent progress in
theoretical electromagnetics ranging from engineering science to nanotechnology.
The topics covered are diverse, ranging from foundational concepts to practical
applications, and include both analytical and numerical approaches.

The book also includes a chapter that is an English translation from German of a
seminal paper published by Eduard Reusch in 1869. The last chapter in the book is
a report on a round-table discussion held in the closing session of the symposium,
on the critical role of Electromagnetism—particularly in the fields of Optics and
Photonics—addressing some of today’s most pressing societal challenges, including
Energy, Climate, and Health.
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Fig. 1 Werner Siegfried
Weiglhofer (25 Aug 1982-12
Jan 2003)

Fig. 2 Speakers at the 2nd Weiglhofer Symposium on Electromagnetic Theory, photographed by
the co-organizer Roberta De Simone at the Hotel Cetus, Cetara (SA), Italy
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Optical Investigations on Periodic )
Multilayers of Mica oo

Eduard Reusch and Akhlesh Lakhtakia

Annalen der Physik und Chemie (Leipzig) 138, 628-638 (1869)
Untersuchung iiber Glimmercombinationen; von E. Reusch.
(Aus d. Monatasberichten d. Akad. Juli 1869.)

1. Wenn man eine gerade Anzahl diinner Pléttchen zweiaxigen Glimmers in der Art
tiber einander legt, dafs die Hauptschnitte (Supplementarlinien) der Pléttchen
sich unter 90° abwechselnd kreuzen, so erhélt man schon bei einer méfsigen
Zahl von Kreuzungen ein Priparat, das sich nahe wie ein einaxiger Krystall ver-
hilt. Fallen die Glimmerhauptschnitte mit den gekreuzten Polarisationsebenen
zusammen, so ist die Imitation vollstindig; dreht man aber das Préparat in seiner
Ebene, so bleiben zwar die Farbenringe, aber die Arme des schwarzen Kreuzes
hellen sich auf und nach einer Drehung um 45° bleibt nor im innersten Ring ein
kurzarmiges Kreuz iibrig. Norremberg, von dem dieser Versuch stammt, wurde
dazu durch die bekannten Arbeiten Senarmont’s {iber Glimmer und Seignettesalz
veranlafst. Quenstedt’s Mineralogie (2. Auflage, S. 239) ist meines Wissens die
einzige Schrift, in der dieser Versuch erwihnt wird. Uebrigens liefert Hr. Steeg in
Homburg (No. 77 seines Katalogs von 1867) diese Priparate in ausgezeichneter
Schonheit.

2. In letzter Zeit habe ich neue Glimmercombinationen versucht, durch welche die
Wirkung rechts oder links drehender einaxiger Krystalle nachgeahmt werden
sollte. Mit Hiilfe der untenstehenden Figuren will ich vorerst eine Vorstellung
von diesen Combinationen geben.

E. Reusch
Eberhard Karls Universitit Tiibingen, Baden-Wiirttemberg, Germany

A. Lakhtakia (><)
The Pennsylvania State University, University Park, PA, USA
e-mail: akhlesh@psu.edu
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Fig. 1

Fig. 2

Auf zwei Glasplatten wurden Cartons geklebt, welche vorher je drei unter
60° sich schneidende rechtwinklige Ausschnitte zum Einlegen der linglichen
Glimmerlamellen erhalten hatten. Die Lamellen selber stammten von einem
zweiaxigen Glimmer von tiber 70° Axenwinkel; sie waren moglichst diinn und
gleich dick, und in allen fiel die Supplementarlinie (der Hauptschnitt) mit der
lingeren Dimension zusammen. Angenommen man habe 48 Lamellen; die eine
Hilfte wird nun verwendet um nach Fig. 1 die Lamellen in der Ordnung 1, 2,
3 zu einer von links nach rechts ansteigenden Treppe zu schichten; die andere
Hilfte wird nach Fig.2 zu einer von rechts nach links aufsteigenden Treppe
geschichtet. Vor dem Auflegen einer neuen Lamelle wird auf die liegende ein
Tropfen von dickfliissigem Kopalfirnifs gegeben und die neu aufgelegte Lamelle
leicht angedriickt. Man erhilt so zwei Préiparate, deren Lamellen in dem mit
R bezeichneten Stiick (Fig. 1), fiir einen Beobachter, der die Treppe von der
Seite ansieht, nach Rechts, in L (Fig.2) nach Links ansteigen. Der Botaniker,
welcher zur Bestimmung der Windungsrichtung einer Schraube sich in deren
Axe stellt, wird allerdings und vielleicht mit grofserer Consequenz das Stiick
R ein linksgewundenes, und das Stiick L ein rechtsgewundenes nennen; im
Folgenden werde ich aber an dem in der Technik und im gewohnlichen Leben
gebriucblichen Begriff der rechten und linken Schraube festhalten.

Die Priparate R und L verhalten sich nun in der centralen reguldr sechseck-
igen Ueberdeckung sehr nahe wie ein rechts oder linksdrehender Bergkrystall.
Schon bei vier bis sechs Umgingen aus nicht iibermifsig diinnem Glimmer
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lafst sich beim Drehen des oberen Nicols die Drehrichtung bestimmen; im
Norremberg’schen Instrument mit grofsem Sehfeld sieht man das Ringsystem
mit dem blaulichen Mittelkreuz und beim Ueberdecken beider Priparate sehr
befriedigende Andeufungen der Airy’schen Spiralen.

Ganz dieselben Wirkungen erhélt man mit zwei Priparaten, in welchen vier
Lamellensysteme unter 45° zu einer rechten und linken Treppe geschichtet sind.

Die von mir zuerst hergestellten Prédparate bestanden theils aus nicht sehr
diinnen und nicht vollkommen gleich dicken Lamellen, theils war die Zahl
der Umgénge eine kleine (3 bis 6); ich wandte mich daher an Hrn. Steeg und
erhielt von demselben nach kurzer Zeit zwei Paare 60gradiger Prdparate von
tiberraschender Grofse und aufserordentlicher Schonheit, welche namentlich den
Farbenwechsel bei Drehung des oberen Nicols in brillanter Weise zeigen. Das
eine Paar besteht aus je 30 Lamellen von 1/8 A, das andere gar aus je 36 Lamellen
von noch geringerer Dicke. Das erste Paar giebt fiir rothes Licht eine Drehung
von 150°, was einer Quarzdicke von etwa 8™ entspricht.

Zurn Beweis fiir die grofse Sicherheit und Kunstfertigkeit, mit welcher Hr.
Steeg den Glimmer zu behandeln weifs, fiihre ich an, dafs die 72 Lamellen des
zweiten Paares, 12" breit und 30" lang, aus derselben Tafel herausgeshnitten
worden sind. Aus einer diinnen Tafel (1/8 1), die ich der besonderen Giite des
Hrn. Steeg verdanke, habe ich spiter Priparate mit vier Lamellensystemen unter
45° hergestellt, welche die Airy’schen Spiralen gaben, wihrend meine ersten
Priparate zwar den Farbenwechsel beim Drehen des Nicols, beim Ueberdecken
aber ein confuses Bild der Ringe zeigten.

Wenn im convergirenden Licht bei gekreuzten Polarisationsebenen eine
solche Glimmer combination in ihrer Ebene gedreht wird, so bleiben wohl
die Ringe, aber die Arme des schwarzen Kreuzes erfahren Aenderungen;
namentlich sieht man, wie an den Enden der in die Polarisalionsebenen fallenden
Durchmesser des innersten Rings abwechselnd schwarze Flecken ein- und
austreten. Ebenso erfihrt bei parallelem Licht die Farbung kleine Wechsel beim
Drehen des Nicols, jedoch mehr in der Intensitit, als im Farbton.

Ich habe gefunden, dafs man einem Quarze diese Eigenschaften einer Glim-
mercombination dadurch ertheilen kann, dafs man iiber und unter demselben je
eine Achtelundulationsglimmerplatte mit rechtwinklich gekreuzten Hanptschnit-
ten einschaltet. Die Glimmercombinationen sind daher aufzufassen als elliptisch
rechts und links polarisirende Medien, welche sich dem Quarz wohl um so mehr
nihern, je diinner die Lamellen und je grofser die Zahl der Umgénge.

Ebenso lassen sich die unter (1) besprochenen Modificationen des schwarzen
Kreuzes der Norremberg’schen Combination dadurch an einer zur Axe senkrecht
geschnittenen Kalkspathplatte hervorbringen, dafs man dieselbe in der angegebe-
nen Weise mit den Achtelundulationsplatten verbindet und das Ganze in seiner
Ebene dreht; man hat daher in der Glimmercombination die Erscheinung, wie
wenn ein einaxiger nicht drehender Krystall elliptisch polarisirt und analysirt
wiirde.

3. Beim Schichten der Lamellen unter 60° ergeben sich gleichseitige Dreiecke auf
den Seiten des centralen Sechsecks, in welchen nur zwei Lamellensysteme sich
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Fig. 3

Fig. 4

abwechselnd unter 60° kreuzen. Man iiberzeugt sich leicht, dafs es sich bei
diesen Dreiecken, je nach ihrer Lage, um elliptische Rechts- oder Linksdrehung
handelt. Diefs hat mich veranlafst, zunichst die Combination zweier Platten
von beliebiger Dicke, deren Hauptschnitte einen von 90° verschiedenen Winkel
bilden, zu untersuchen. Eine solche Combination giebt im Allgemeinen rechts
oder links elliptisch polarisirtes Licht, d. h. es gelingt beim Drehen des oberen
Nicols eine Drehrichtung zu bestimmen, aber beim Drehen der Combination in
ihrer Ebene dndert sich die Intensitit und wohl auch die Niiance der Farbe. Der
Versuch gelingt sowohl mit zwei beliebigen Glimmer als Gypsplatten, oder bei
Combinirung von Glimmer mit Gyps, wenn nur deren Farben keiner zu hohen
Ordnung angehoren.

Im Folgenden beschiftige ich mich blos mit Glimmertarfeln von gleicher
Dicke. Zwei solche Tafeln, in welchen wie frither die lingere Dimension dem
Hauptschnitt entspreche, konnen nun entweder zu einer rechten Stufe A (Fig. 3)
oder zu einer linken Stufe B (Fig. 4) zusammengelegt werden. Zwei solche Stufen
haben jedenfalls entgegengesetzte optische Drehung, aber der Sinn der Drehung
ist durch die Dicke der Platten mit bestimmt. Zeigen z. B. die Platten ein
Griin zweiter Ordnung, so giebt die rechte Stufe A auch Rechtsdrehung; bei
Platten, welche ein Gelb erster Ordnung zeigen, ist es umgekehrt. Der Winkel
der Hauptschnitte ist ohne Einflufs auf die Drehrichtung, nur mufs er von 0°
und 90° gehorig abweichen. Legt man zwei z. B. 60gridige Stufen A und B
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mit parallelen Hauptschnitten iiber einander, so bleibt immer eine Drehung im
Sinne der oben liegenden Stufe. Kreuzt man die Stufen rechtwinklich, so findet
in der mittleren Ueberdeckung keinerlei Wirkung stall, was auch das Azimut der
Stufenverbindung seyn mag: die zwei Arme des Sternkreuzes, welches aus der
Ueberdeckung der Platten verschiedener Stufen entsteht, haben entgegengesetzte
Drehung.

Von grofserem Interesse ist aber der Fall, dafs viele gleiche Stufen aus sehr
diinnen Glimmerlamellen zu einer rechten oder linken Stufensdule geschichtet
sind: in diesem Fall dreht die rechte Stufensaule rechts, die linke links. Hiermit
begreift man sofort z. B. bei der 60griadigen Combination Fig. 1 die Wirkungen
der Dreiecke a, b, c; die zwei ersten gehdren zu einer rechten Stufensiule,
das letztere zu einer linken. Die Dreiecke a’, b’, ¢/ wirken natiirlich wie die
gegeniiberliegenden gleicharmigen. Mit derselben Regel bestimmen sich die
Drehrichtungen in den dufseren Sternspitzen bei der 45gridigen Combination
von vier Lamellensystemen.

Solche Stufenlsdulen zeigen noch cine andere Eigenthiimlichkeit: im conver-
girenden Lichte sieht man durch die Ueberdeckung ein zweiaxiges Ringsystem,
dessen Supplementarlinie den spitzigen Winkel der Hauptschnitte der Glimmer-
lamellen halbirt und dessen Axenwinkel kleiner ist als der des angewandten
Glimmers. Die schwarzen Hyperbeln erscheinen jedoch nur, wenn die Supple-
mentarlinie des Combinationsglimmers mit den Polarisationsebenen 45° macht:
fillt sie mit der einen oder andern zusammen, so enthalten die innersten Ringe
nur schwarze Tupfen.

Die Wirkung einer Stufensdule ldfst sich mit ziemlicher Anndherung an
einer dicken Glimmerplatte dadurch nachahmen, dafs man sie zwischen zwei
Achtelundulationsplatten mit rechtwinklig gekreuzten Hauptschnitten in der
Art einschaltet, dafs der Hauptschnitt der Glimmerplatte 45° mit jenen macht;
und zwar hat diese Combination im parallelen Licht verschiedene Drehrich-
tung, je nachdem der Hauptschnitt der Platte das eine oder audere Paar der
Scheitelquadranten halbirt, welche durch die Hauptschnitte der Achtelundula-
tionsplatten gebildet werden. Es erinnert diefs au eine von J. Miiller (Lehrb.
d. Physik, 7. Aufl., I, S. 906) beschriebene Anordnung, bei welcher durch eine
analoge Verbinduing einer Gypsplatte mit zwei Viertelundulationsglimmerplat-
ten, wenigstens im parallelen Licht die Wirkung des Quarzes nachgeahmt wird.

4. Die optischen Wirkungen der bisher besprochenen Glimmercombination lassen
eine mathematische Behandlung zu, welche fiir die Erscheinungen in parallelem
Licht voraussichtlich mit viel geringerer Schwierigkeit, als fiir die im conver-
girenden Licht verbunden seyn wird. Vielleicht findet sich ein tiichtiger Rechner
veranlafst, diese wohl nicht ganz undankbare Aufgage anzufassen.

Ob diese Combinationen dazu angethan sind, uns Aufschlufs oder wenigstens
Andeutungen iiber den Verband der mit Circularpolarisation begabten Molekiile
zu geben, das wird die Zukunft lehren. Vor der Hand weifs ich in dieser
Beziehung nur eine schwache Analogie und einige Vermuthungen beizubringen,
die ich der Nachsicht der Fachménner empfehlen mochte.
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In einer fritheren Mittheilung tiber die sogenannte Lamellarpolarisation des
Alaunsl) habe ich nachzuweisen versucht, dafs es sich hier um eine schwache
Doppelbrechung in Folge innerer Spannungen handle, die man sich in den
Octaéderflachen in der Art wirksam zru denken habe, dafs die optische Elasticitit
in diesen Flachen nach allen Richtungen gleich, aber kleiner als senkrecht sey.
Ferner habe ich gezeigt, wie die Wirkung eines optisch activen Alaunoctaéders
oder eines Priparats daraus nach zwei parallelen Wiirfelflichen, in den vier dis-
tincten Quadranten durch vier diinne Glimmerpléttchen vollstdndig nachgeahmt
werden kann. Bei diesem Glimmerpriparate kommen aber keine Ueberdeckrin-
gen vor, wihrend der Nerv der neuen Préparate eben in den Ueberdeckungen
liegt. Es entsteht daher umgekehrt die Frage nach derjenigen Krystallstructur,
welche einer Glimmercombination mit Ueberdeckungen entspricht.

Ein nahe liegender, Gedanke ist nun wohl folgender: im idealen activen
Alaunoctaéder reichen die irgend einer Octaéderfliache parallelen Spannungsebe-
nen nur bis an die drei rechtwinklichen Axenebenen heran; es ist aber auch
denkbar, dafs in einem Krystall die durch innere Spannungen und Contrac-
tionen herbeigefiihrle Storung der urspriinglichen Structur, sich auf eine oder
mehrere von einander verschiedene, gegen die Richtung des durchgehenden
Lichtes geneigte Spannungsebenen werde zuriickfithren lassen, welche den
ganzen Krystall je in constanter Richtung durchsetzen. Nun wissen wir zwar
sehr Weniges iiber die normale Krystallstructur und folglich noch viel weniger
iber die factisch vorhandenen Stérungen derselben: will man daher die Sache
tiberhaupt anfassen, so sieht man sich vor der Hand auf einige instinctmifsige
Vermuthungen beschrinkt.

Im regularen System ist der Fall einzelner nicht durchgehender Span-
nungsebenen in dem Octaéder des activen Alaunoctaéders verwirklicht.
Die optischen Erscheinungen miissen verwichelter werden, wenn andere
Flachen, z. B. die des Leucitoéders als einzelne Spannungsflichen auftrefen
(Leucit. Analcim?). Die von Marbach entdeckte Circularpolarisation des
chlorsauren Natrons ist moglicherweise das Resultat von Spannungen nach den
Dodekaéderflichen, verbunden mit secundaren Spannungen nach den Fldchen
des rechten oder linken Tetraéders; die 45griadige Glimmercombination von vier
Lamellensystemen giebt vielleicht, bei aufserordentlich schwacher Wirkung der
einzelnen Umginge, ein Bild hieran.

Dieselbe Glimmercombination entspricht vielleicht auch dem Falle der Cir-
cularpolarisation im quadratiscben System. Von den vier Lamellensystemen
wiirden 1 und 3 die Structur des einaxigen nicht drehenden Krystalls einiger-
maafsen versiunlichen; die Lamellensysteme 2 und 4 wiren das Aequivalent
von durchgehenden Spannungen nach den Fliachen des rechten oder linken
Hemioctaédera. — Das Auftreten einer einzelnen gegen die Axe geneigten Span-
nungsebene, oder die ungleiche Intensitét der einzelnen Spannungen miifste sich

I Ann. Bd. 132 (1867) S. 618.
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durch zweiaxigen Habitus der optischen Erscheinungen kund thun (Dislocation
des schwarzen Kreuzes im Beryll, gelben Blutlaugensalz usw.).

Die Circularpolarisation im rhomboédrischen System ist wohl das Resultat
von drei gegen die Axe gleich geneigten durchgehenden Spannungsebenen,
welche vielleicht den Flichen des einen oder andern der zwei zusammengehori-
gen Halbskalenoéder folgen. Der Gedanke an die Moglichkeit solcher innerer
Spannungen liegt wohl bei keiner Substanz so nahe, wie bei der Kieselerde. Sind
die drei Spannungen vollkommen gleichwerthig, so hétte man die normale rechts
oder links drehende Wirkung des Quarzes; fallen alle drei Spannungen fort,
oder gleichen sich dieselben gegenseitig aus, so bliebe, wie man diefs an vielen
Amethysten stellenweise beobachtet, die rein einaxige Wirkung ohne Rotation.
Noch bleibt aber die Moglichkeit, dafs nach Umstéinden jene drei Spannungen
von ungleicher Intensitit sind, oder sich auf zwei reduciren, und dann hitte
man die an manchen Quarzen so prignant auftretende zweiaxige elliptische
rechts oder links drehende Polarisation, wie man sie an den oben besprochenen
Stufensédulen, oder an Préiparaten beobachtet, an welchen absichtlich eins der drei
Lamellensysteme aus etwas dickerem oder diinnerem Glimmer besteht.

In Betreff der mannigfaltigen Erscheinungen am Quarz und Amethyst erlaube
ich mir auf die reichhaltigen und wohlgeordneten Beobachtungen von Dove in
seiner Farbenlehre (S. 247-260) zu verweisen.

Zum Schlufs bemerke ich noch, dafs die Kenntnifs der Wirkungen der
Glimmercombinationen auch von einigem Werth seyn diirfte fiir das Verstéindnifs
gewisser Erscheinungen am Glimmer selber. Die Wandlungen des Ringsystems
bei Zwillingen, so wie die oft sehr erheblichen Aenderungen im Winkel der
optischen Axen an demselben Stiicke begreifen sich einigermaafsen, wenn man
regelmifsige Verwachsungen und Durchdringungen verschiedener Individuen
annimmt. Die Kenntnifs dieser Erscheinungen verdanke ich zum grofsten Theil
den Mittheilungen und vielfachen giitigen Glimmersendungen von G. Rose,
und diese waren es auch, welche fiir mich urspriinglich die Veranlassung zur
Herstellung der neuen Glimmercombinationen geworden sind.

Tiibingen, den 29. Juni 1869.

Zusatz.

Aus zuverldssiger Quelle habe ich erfahren, dafs von einigen Physikern
behauptet worden ist, der Nachweis der Drehung bei geschichteten Glimmer-
lamellen rithre von Norremberg her. Ich erlaube mir nun zu erkldren, dafs
unter den Préparaten Norremberg’s, welche zu gleichen Theilen in die hiesige
Sammlung und in die der polyt. Schule zu Stuttgart iibergegangen sind, nur
rechtwinkliche Combinationen vorkommen. Die durch 60gridige Combinatio-
nen bewirkte Rechts- und Linksdrehung habe ich in der Pfingstwoche dieses
Jahres durch selbstindige Versuche gefunden und sobald ich des Resultats
ganz sicher war, Hrn. Steeg in Homburg um Herstellung derartiger Préparate
gebeten; ein Wunsch, dem derselbe in der oben angegebenen ausgezeichneten
Weise nachgekommen ist. — Zur Bekriftigung dieser meiner Behauptungen
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mogen zwei Documente dienen, die Hr. Prof. Poggendorff etwaigen Zweiflern
vorzuweisen die Giite haben wird.

Tiibingen, 24. Oct. 1869.

E. Reusch.
Zusatz des Herausgebers.

Die beiden Documente, von denen hier die Rede ist sind: ein Attest des Hrn.
Prof. Zech und ein Brief des Optikers Hrn. W. Steeg.

In dem ersteren heifst es schliefslich:

— Der Unterzeichnete ist sonach und dann noch insbesondere wegen seines
hiufigen Verkehrs mit Norremberg von 1854 bis 1862 berechfigt und befihigt,
auszusprechen, dafs Norremberg nie andere Glimmercombinationen gemacht
hat, als rechtwinklige. Im hiesigen physikalischen Kabinet befindet sich kein
einziges Priparat von Norremberg, bei welchem zwei Glimmerblétichen unter
einem andern Winkel, als eincm rechten, gekreuzt wiren, insbesondere keines,
das eine Drehung der Polarisationsebene zeigt.

Stuttgart, 20. Oct. 1869.

Prof. Dr. Zech.

Und der Brief des letzteren sagt:

— Hierzu erlaube ich mir zu bemerken, dafs ich bestimmt weifs, dafs
Norremberg derartige circular polarisirende Priparate nie dargestellt hat. Ich
habe mit demselben viel verkehrt und seine ganze Sammlung gesehen.

Seine derartigen Glimmerpriparate waren nur in rechten Winkeln gekreuzt,
um Sénarmont’s Hypothese als richtig zu beweisen, dafs man aus diinnen
Lamellen von zweiaxigem Glimmer einen einaxigen Korper etwa wie Kalkspath
herstellen kann.

Die geniale Idee des Kreuzens der Glimmer-Lamellen in Winkeln von 60°,
also im hexagonalen Sinne, ging aber zuerst und ganz allein von Prof. Reusch
aus, wie aus dessen Briefe an mich vom 16. Mai ersichtlich ist.

Die Sache hat mich so interessirt, weil ich frither schon dhnliche Versuche
gemacht hatte, welche mir aber nicht gelungen waren. Gerade die Kreuzung
im Winkel von 60° hat das gliickliche Resultat herbeigefiihrt. Dieses Verdienst
gebiihrt Hrn. Prof Reusch und es ist Unrecht, wenn es ihm von anderer Seite
streitig gemacht werden sollte.

Homburg v. d. Hohe den 21. Oct. 1869.

Wilhelm Steeg.

Annalen der Physik und Chemie (Leipzig) 138, 628—638 (1869)
Investigation into mica combinations; by E. Reusch.
(From the monthly reports of the Academy, July 1869.)

. If an even number of thin plates of biaxial mica are placed on top of each other
in such a way that the main sections (supplementary lines) of the plates cross
alternately at 90°, even with a moderate number of crossings, a preparation is
obtained that behaves almost like a uniaxial crystal. If the main mica sections
coincide with the crossed polarization planes, the imitation is complete; if,
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however, the preparation is rotated in its plane, the color rings remain, but
the arms of the black cross lighten, and after a rotation of 45°, only a short-
armed cross remains in the innermost ring. Norremberg, who carried out this
experiment, was prompted to do it by the well-known work of Senarmont on
mica and Rochelle salt. Quenstedt’s Mineralogy (2nd edition, p. 239) is, to my
knowledge, the only text in which this experiment is mentioned. Incidentally, Mr.
Steeg in Homburg (No. 77 of his 1867 catalogue) supplies these preparations in
excellent beauty.

2. Recently, I have tried new mica combinations by which the effect of right- or
left-rotating uniaxial crystals could be imitated. With the help of the following
figures, I will first give an idea of these combinations.

Cardboard boxes were glued to two glass plates, each of which had previously
been provided with three rectangular cutouts intersecting at 60° for the insertion
of the elongated mica lamellae. The lamellae themselves came from biaxial mica
with an axis angle of over 70°; they were as thin as possible and of the same
thickness, and in all of them, the supplementary line (the main cut) coincided
with the longer dimension. Suppose you have 48 lamellae; one half is now used
to layer the lamellae in the order 1, 2, 3 to form a staircase rising from left to right
as shown in Fig. 5; the other half is layered o form a staircase rising from right
to left as shown in Fig. 6. Before placing a new lamella on top, a drop of thick
copal varnish is placed on the one lying on top, and the newly placed lamella is

Fig. 5

Fig. 6
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lightly pressed down. In this way, two preparations are obtained, the lamellae of
which rise to the right in the section marked R (Fig. 5) for an observer who looks
at the staircase from the side and to the left in L (Fig. 6). The botanist who, in
order to determine the direction of the winding of a screw, stands on its axis will,
of course and perhaps with greater consistency, call the section R a left-handed
one and the section L a right-handed one; in the following, however, I will stick
to the concept of right and left screws, which is common in technology and in
everyday life.

The preparations R and L now behave in the central regular hexagonal
covering very similarly to a right- or left-turning rock crystal. After just four
to six turns of the not excessively thin mica, the direction of rotation can be
determined by turning the upper Nicol prism; in the Norremberg instrument with
a large field of view, one can see the ring system with the bluish central cross and,
when both preparations are covered, very satisfactory results of the Airy spirals
can be seen.

Exactly the same effects are obtained with two preparations in which four
lamella systems are layered at 45° to form a right and a left staircase.

The preparations I first made consisted partly of lamellae that were not very
thin and not of exactly the same thickness, and partly the number of turns was
small (3 to 6). I therefore turned to Mr. Steeg and after a short time received from
him two pairs of 60° preparations of surprising size and extraordinary beauty,
which particularly show the color change brilliantly when the upper Nicol prism
is rotated. One pair consists of 30 lamellae of 1/8 A each, the other of 36 lamellae
of even lesser thickness. The first pair gives a rotation of 150° for red light, which
corresponds to a quartz thickness of about 8 mm.

As proof of the great certainty and skill with which Mr. Steeg knows how
to handle the mica, I state that the 72 lamellae of the second pair, 12 mm wide
and 30 mm long, were cut out of the same plate. From a thin plate (1/8 1), for
which I owe the special kindness of Mr. Steeg, I later made preparations with
four systems of lamellae at 45°, which gave the Airy spirals, while my first
preparations showed the color change when the Nicol prism was rotated, but
a confused image of the rings when covered.

If such a mica combination is rotated in its plane in converging light with
crossed polarization planes, the rings remain, but the arms of the black cross
undergo changes; in particular, one can see how black spots alternately enter and
exit the ends of the diameters of the innermost ring that fall into the polarization
planes. Likewise, in parallel light, the coloring undergoes small changes when
the Nicol prism is rotated, but more in intensity than in hue.

I have found that quartz can be given these properties of a mica combination
by inserting an eighth-undulation mica plate with right-angled crossing cuts
above and below it. The mica combinations can therefore be regarded as
elliptically right- and left-polarizing media, which come closer to quartz the
thinner the lamellae and the greater the number of turns.

Likewise, the modifications of the black cross of the Norremberg combination
discussed under (1) can be produced on a calcite plate cut perpendicular to the
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axis by connecting it in the manner described with the eighth undulation plates
and rotating the whole in its plane; one therefore has in the mica combination the
appearance as if a uniaxial non-rotating crystal that is elliptically polarized and
analyzed.

3. When the lamellae are layered at 60°, equilateral triangles are formed on the sides
of the central hexagon, in which only two systems of lamellae intersect each other
alternately at 60°. It is easy to see that these triangles are elliptical, right or left-
handed, depending on their position. This prompted me to first investigate the
combination of two plates of any thickness, whose main sections form an angle
other than 90°. Such a combination generally produces light that is elliptically
polarized to the right or left, i.e., it is possible to determine the direction of
rotation by rotating the upper Nicol prism, but when the combination is rotated
in its plane, the intensity and probably also the nuance of the color change. The
experiment is successful with any two mica or gypsum plates, or by combining
mica with gypsum, provided that their colors do not belong to too high an order.

In the following, I will only deal with mica plates of the same thickness.
Two such plates, in which, as before, the longer dimension corresponds to the
main section, can now be put together to form either a right step A (Fig.7) or
a left step B (Fig. 8). Two such steps always have opposite optical rotations, but
the direction of the rotation is determined by the thickness of the plates. If, for

Fig. 7

Fig. 8
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example, the plates show a second-order green, the right-hand step A also gives
a right-hand rotation; for plates that show a first-order yellow, it is the other
way round. The angle of the main sections has no influence on the direction of
rotation, only it must deviate considerably from 0° and 90°. If, for example, two
60-degree steps A and B with parallel main sections are placed on top of each
other, there is always a rotation in the direction of the previous step. If the steps
are crossed at right angles, no effect is found in the middle overlap, whatever the
azimuth of the step connection: the two arms of the star cross, which is created
by the overlap of the plates of different steps, have opposite rotation.

Of greater interest, however, is the case where many equal steps made of
very thin mica lamellae are layered into a right or left step column: in this case,
the right step column turns right, the left one left. This immediately makes it
possible to understand, for example, the effects of triangles a, b, c¢ in the 60-
degree combination Fig.5; the first two belong to a right step column, the last
one to a left one. The triangles a’, &', ¢’ naturally work like the opposite equal-
armed ones. The same rule determines the directions of rotation in the outer star
points in the 45-degree combination of four lamella systems.

Such step columns show another peculiarity: in converging light, one can see
through the overlap a two-axis ring system, the supplementary line of which
bisects the acute angle of the main sections of the mica lamellae and whose axial
angle is smaller than that of the applied mica. The black hyperbolas, however,
only appear when the supplementary line of the combination mica makes 45°
with the polarization planes: if it coincides with one or the other, the innermost
rings contain only black dots.

The effect of a stepped column can be imitated with a fair approximation

on a thick mica plate by inserting it between two eighth-undulation plates with
main sections crossed at right angles in such a way that the main section of the
mica plate makes 45° with the latter; this combination has a different direction
of rotation in parallel light, depending on whether the main section of the plate
bisects one or the other pair of vertex quadrants formed by the main sections of
the eighth-undulation plates. This is reminiscent of an arrangement described by
J. Miiller (Lehrb. d. Physik, 7th ed., I, p. 906), in which the effect of quartz is
imitated, at least in parallel light, by an analogous connection of a gypsum plate
with two quarter-undulation mica plates.
. The optical effects of the mica combination discussed so far allow for a
mathematical treatment, which will probably be much less difficult for the
phenomena in parallel light than for those in converging light. Perhaps a capable
calculator will be prompted to take on this not entirely thankless task.

Whether these combinations are capable of giving us information or at least
hints about the association of molecules endowed with circular polarization is
something that only the future will tell. For the time being, I can only offer a weak
analogy and a few conjectures in this regard, which I would like to recommend
to the indulgence of experts.
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In an earlier communication on the so-called lamellar polarization of alumz), 1
tried to prove that this is a weak double refraction as a result of internal tensions,
which must be imagined to be effective in the octahedron surfaces in such a way
that the optical elasticity in these surfaces is the same in all directions, but smaller
than perpendicular. Furthermore, I showed how the effect of an optically active
alum octahedron or a preparation made from it can be completely imitated in the
four distinct quadrants by four thin mica plates on two parallel cube surfaces.
However, this mica preparation does not have any overlap rings, whereas the
nerve of the new preparations lies precisely in the overlaps. This raises the
converse question of the crystal structure that corresponds to a mica combination
with overlaps.

An obvious idea is the following: in the ideal active alum octahedron, the
tension planes parallel to any octahedral surface only extend as far as the three
right-angled axial planes; however, it is also conceivable that in a crystal, the
disturbance of the original structure caused by internal tensions and contractions
can be traced back to one or more different tension planes inclined against the
direction of the light passing through, which pass through the entire crystal in a
constant direction. Now, we know very little about the normal crystal structure
and consequently even less about the disturbances that actually exist in it: if
one wants to tackle the matter at all, one is limited for the time being to a few
instinctive assumptions.

In the regular system, the case of individual non-continuous tension planes is
realized in the octahedron of the active alum octahedron. The optical phenomena
must become more complicated when other surfaces, e.g., that of the leucito-
hedron, appear as individual tension surfaces (leucite, analcime?). The circular
polarization of sodium chloride discovered by Marbach is possibly the result
of tensions along the dodecahedron surfaces, combined with secondary tensions
along the surfaces of the right or left tetrahedron; the 45-degree mica combination
of four lamella systems perhaps gives an example of this, given the extremely
weak effect of the individual turns.

The same mica combination perhaps also corresponds to the case of circular
polarization in the square system. Of the four lamellar systems, 1 and 3 would
somewhat represent the structure of the uniaxial non-rotating crystal; lamellar
systems 2 and 4 would be the equivalent of continuous tensions along the surfaces
of the right or left hemioctahedron. The appearance of a single tension plane
inclined against the axis, or the unequal intensity of the individual tensions,
would have to be manifested by a biaxial attitude of the optical phenomena
(dislocation of the black cross in beryl, yellow prussiate of blood, etc.).

The circular polarization in the rhombohedral system is probably the result
of three continuous tension planes that are equally inclined to the axis and
that perhaps follow the surfaces of one or the other of the two associated half-

2 Reusch, E.: Ueber die sognenannte Lamellarpolarisation des Alauns. Annalen der Physik und
Chemie (Leipzig) 132, 618-622 (1867).
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scalenohedrons. The idea of the possibility of such internal tensions is probably
more obvious in silica than in any other substance. If the three tensions are
completely equal, then one would have the normal right- or left-turning effect
of quartz; if all three tensions disappear, or if they balance each other out, then
the purely uniaxial effect without rotation would remain, as is observed in places
on many amethysts. However, the possibility still remains that, depending on
the circumstances, these three tensions are of unequal intensity, or are reduced
to two, and then one would have the two-axis elliptical right- or left-turning
polarization that occurs so prominently in some quartz, as observed in the step
columns discussed earlier, or in preparations in which one of the three lamellar
systems intentionally consists of somewhat denser or thinner mica.

With regard to the various phenomena on quartz and amethyst, I would like to
refer to the extensive and well-organized observations by Dove in his theory of
colors (pp. 247-260).

Finally, I would like to note that the condensation of the effects of mica
combinations may also be of some value for understanding certain phenomena
on mica itself. The changes in the ring system in twins, as well as the often very
significant changes in the angle of the optical axes on the same piece, can be
understood to some extent if one assumes regular intergrowths and penetrations
of different individuals. I owe my knowledge of these phenomena largely to the
information and many kind mica shipments from G. Rose, and it was these that
originally gave me the impetus to produce the new mica combinations.

Tiibingen, June 29, 1869.

Addition.

I have learned from a reliable source that some physicists have claimed that the
proof of rotation in layered mica lamellae comes from Norremberg. I now take
the liberty of explaining that among Norremberg’s preparations, which have been
transferred in equal parts to the local collection and to that of the polytechnic school
in Stuttgart, only right-angled combinations occur. I discovered the right and left
rotation caused by 60-degree combinations during the Whitsun week of this year
through independent experiments, and as soon as I was completely sure of the
result, I asked Mr. Steeg in Homburg to produce such preparations; a request that
he fulfilled in the excellent manner described earlier. To confirm my claims, two
documents may serve that Prof. Poggendorff will be kind enough to show to any
doubters.

Tiibingen, Oct. 24, 1869.

E. Reusch.
Editor’s note.

The two documents we are talking about here are: a certificate from Prof. Zech
and a letter from the optician Mr. W. Steeg.

The first one finally states:

The undersigned is therefore entitled and qualified, especially because of his
frequent contact with Norremberg from 1854 to 1862, to state that Norremberg
never made any other mica combinations than right-angled ones. In the physics
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cabinet here there is not a single preparation by Norremberg in which two mica
sheets were crossed at an angle other than a right one, and in particular none that
shows a rotation of the plane of polarization.

Stuttgart, Oct. 20, 1869.

Prof. Dr. Zech.

And the latter’s letter says:

— I would like to point out that I know for certain that Norremberg has never
produced such circularly polarizing preparations. I have had a lot of contact with
him and have seen his entire collection.

His preparations of such mica were only crossed at right angles in order to prove
the correctness of Sénarmont’s hypothesis that one can produce a uniaxial body,
such as calcite, from thin lamellae of biaxial mica.

The ingenious idea of crossing the mica lamellae at angles of 60°, i.e., in a
hexagonal sense, came first and solely from Prof. Reusch, as can be seen from his
letter to me dated May 16th.

The matter interested me so much because I had already made similar attempts
before, but had not succeeded. It was precisely the crossing at an angle of 60° that
brought about the happy result. This credit goes to Prof. Reusch, and it would be
unjust if anyone else were to dispute it.

Homburg v. d. Hohe Oct. 21, 1869.

Wilhelm Steeg.

Translator’s Notes

1. An earlier version of Reusch’s journal paper appeared in the Monthly Report of
the Royal Prussian Academy of Sciences in Berlin for July 1869 [1].

2. An English-language translation of Ref. [1] was provided by W. G. Lettson in
1870 [2].

3. Reusch slightly revised Ref. [1] for publication in the December 1869 issue
of Annalen der Physik und Chemie, and he also added a paragraph dated
October 24, 1869. Furthermore, this paper [3] had an accompanying note from
Johann Christian Poggendorff, the Editor of the journal, and the testimonies of
Paul Heinrich Zech (Polytechnikum Stuttgart) and Wilhelm Steeg. This chapter
provides an English-language translation of all of these items together.

4. A French-language commentary on the research of Reusch encompassing the
1869 paper was published in 1870 [4].
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Unidirectional Waves in Discrete )
Plasmonic Waveguides Qe

Vadim A. Markel

1 Introduction

Linear periodic chains of metal nanoparticles have attracted significant attention in
the past 20 years or so with envisaged applications in spectroscopy and sensing [1-
4] as well as in waveguiding and information transfer [5-8]. In our previous work,
we investigated the electromagnetic properties of simple linear plasmonic chains
using the point dipole approximation [9-12]. Theories accounting for higher-order
multipole interactions have also been developed [13-15]. Topological properties of
Bloch modes in chains with a more complicated geometry were studied in [16, 17].
Additional references can be found in the review articles [18, 19].

One aspect of plasmonic chains that received little attention so far is direc-
tionality. The radiation pattern of an electrically small antenna is symmetric with
respect to the coordinate inversion r — —r. If such an antenna illuminates a
small central segment of a chain that is invariant under the same transformation,
the electromagnetic excitation in the form of a surface plasmon polariton (SPP) will
travel in both directions with the same amplitude. However, if we give the chain a
sense of direction, the inversion symmetry of the system “antenna-+chain” would be
broken. In this case, it is possible to engineer the source antenna so that it would
send the SPP in one direction only. The direction can be switched by tuning the
phase relations of the elementary dipoles comprising the antenna. When placed in
free space, the source antenna of this type would radiate as a single dipole (in the
radiation zone). However, when placed in a close vicinity of a directional chain,
it will send the SPP in only one of the two possible directions, depending on its
internal phase relations. Intuition may suggest that such direction-selective coupling
is possible only if non-reciprocal materials are used in the chain. However, we will
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show that non-reciprocity is not required. This is so because the operator of dipole
sum, which plays a fundamental role in the theory of discrete waveguides, is not
generally symmetric, even if all the materials involved are reciprocal.

This chapter contains the general theory of directional discrete waveguides
in the framework of the point dipole approximation and a numerical example
demonstrating the feasibility of direction-selective coupling. While under some
conditions the dipole approximation may not be accurate, the basic observation that
the dipole sum in chains with a sense of direction is not symmetric is not expected
to change if we account for the higher multipoles or use a more general method
for solving the electromagnetic problem. In Sect. 2, we describe the geometry of a
discrete structured chain. Section 3 introduces the coupled-dipole equation and the
dipole sum. In Sect. 4, we derive the dispersion equation that is specific to metal
particles with the Drude dielectric function. In Sect. 5, we discuss some algebraic
properties of the dispersion equation, which will prove useful for understanding
the direction-selective coupling. In Sect.7, we provide a simple example of a
directional chain and demonstrate that direction-selective coupling is possible.
Section 8 contains a discussion and further examples.

Gaussian system of base dimensions and the corresponding form of electromag-
netic equations are used throughout. We work in the frequency domain using the
exp(—iwt) phasor convention.

2 Waveguide Geometry

Consider a linear discrete waveguide consisting of periodically arranged, electrically
small particles of the same permittivity €(w) embedded in a host medium with the
constant dielectric permittivity €, > 1 where €, = 1 corresponds to vacuum and
w is the frequency. We work in the dipole approximation, so that the only relevant
parameters of a particle are its location and the dipole polarizability tensor &(w).
We will use the model of metal ellipsoids to obtain physically accessible values of
& (w) while making sure that the dipole approximation is still valid. In this case, the
location coincides with the ellipsoid center and &(w) can be expressed analytically
in terms of the ellipsoid semi-axes and €(w). While the ellipsoids comprising the
waveguide can have different shapes and orientations, we assume that the material
from which the particles are made is the same; otherwise, theory becomes too
complicated.

Geometry of a discrete waveguide is illustrated in Fig. 1. The system is periodic
in the Z direction with the lattice step s, and we label the unit cells by n =
0,+£1, £2,.... Each cell contains p > 0 particles labeled by v = 1,2, ..., p. We
introduce the composite index (nv) to label the particles. The locations and dipole
moments of all particles are denoted by r,,, = (xy, yy, z4v) and d,,,,. Here x, and y,
are independent of n due to periodicity and

Zn+1,v = Znv +h. (D
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Fig. 1 Schematic illustration of a discrete waveguide with p = 6 particles per cell. Three unit
cells are shown including the reference cell C with the index n = 0

As the polarizabilities are also periodic, we write &,(w) for v-th article in an
arbitrary cell. The set of points ry, together with the polarizabilities &, define the
reference unit cell C. Thus, the waveguide consists of three-dimensional rectangular
cells periodically repeated in the Z-direction; however, there is no periodicity in X
or Y. Note that the transverse dimensions of a unit cell A, and A, are ambiguous
and do not enter any equations; we have introduced these quantities in the figure
only for visual convenience.

3 Coupled Dipole Equation and the Dipole Sum

The frequency-domain coupled dipole equations in the discrete waveguide have the
form

(@) dyy = ey + Z é(rnv, T @) iy ()
() rv)
where
Av(@) =&, () 3)

is the inverse polarizability tensor, d,, are the dipole moments, e, are the external
fields (e.g., generated by a source antenna), @ is the working frequency, and
G(r, r’; w) is the free-space Green’s tensor for the electric field. We have tacitly
assumed that &, () are invertible, which is the case for ellipsoids with any realistic
dielectric function € (w) # €5,. The condition (nv) # (mu) ensures that the electric
field at the particle (nv) is the sum of the external field e, and the fields generated
by all other particles excluding the particle (nv) itself. Additional details pertaining
to the form of the coupled dipole equation (2), alternative forms of this equation,
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and accounting for the radiative correction to the quasi-static polarizability can be
found in [20].

The expression for G applicable to free space is given in the Appendix. What
is important for us now is that the Green’s tensor satisfies the following symmetry
properties:

G, v; ) =GT(r,r; o), (4a)
G,v; w) = Gr+s2,v + 57, 0. (4b)

Here the superscript 7 denotes matrix transposition, and s is an arbitrary real
scalar (translation along the Z axis). The first equation aforementioned is Lorentz
reciprocity, and the second is a consequence of the translational invariance of the
waveguide. If the waveguide is embedded in an infinite homogeneous space, as we
assume here, the Green’s tensor possesses even stronger symmetries. We then have,
additionally, G(r,r; w) = GT(r,r; w) and G(r,¥; w) = G(r +s,¥ +5; W),
where s is an arbitrary translation vector. However, if the waveguide is placed in an
external cladding, the latter properties may be lost while the properties in (4) would
survive. Therefore, the theoretical results presented further are generalizable to the
case of an external cladding as they rely only on (4) and not on any of the stronger
symmetries.

To find guided waves, we set external fields e,, to zero and seek Bloch-periodic
solutions to (2) of the form

dyy =d, e @ Q)
Upon substituting this ansatz into (2), we obtain the equation
Bo@idy =Y 7 Gny, tpys @) ! @O0 dy, (©6)
(musnalé(nv)

Since summation in (6) is carried out over all integer m, the result does not depend
on n, and we can set n = 0 in the right-hand side of (6). Using this observation, we
can rewrite (6) as

P
)21)(60) dv = Z SWL(CO, q) du s (7)
n=1
where
> .
SVM(ws Q) = Z G(r()lh rmu; Ll)) el (ghym (8)

()% (O0)
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is known as the dipole sum. Here 1 < v, u < p. Note also that rg, are in the
reference cell C.

Most previous investigations of discrete plasmonic waveguides were restricted
to simple periodic 1D chains or 2D lattices where all particles are equivalent [18],
although more complicated geometries have also been considered [16, 17]. In the
case of simple periodic 1D chains, the dipole sum is reduced to a 3 x 3 tensor
S(w, q), which is diagonal in the reference frame of Fig. 1. It is straightforward to
show that S’(a), q) = ST (w, q) and S’(a), —q) = S’(a), q). These symmetry relations
are special cases of the more general relation

Sou(w, —q) = S}, (@.9) . ©)

which is applicable to structured chains. And while it is possible, under some
additional conditions, to have S’W (w, —q) = S’v w(w, q), the latter relation does not
always hold. This observation is the main difference between simple and structured
chains, and it will be exploited further to find localized excitation schemes that
excite only the SPPs propagating in a given direction along the chain. We refer to
this phenomenon as to the direction-selective coupling and to the resulting SPPs as
unidirectional.

We can prove (9) by starting from the definition (8) and following the chain of
equalities

00
S”“ (v, _q) = Z G(r()v» Finps ) e_i (gh)m
O£ (mp)
)

Z G(roy, Fomps w) e (@hm
m=—00

(Ov)F#(—mp)
o0

= Z é(rmv’ rou; ) ei (@hym

Oy (mpw)

s .
= Z GT(rO;u Ty @)e' (gh)m
OV) E(mpr)
=8 (0.9 . (10)

To derive the third expression aforementioned, we have used translational invariance
of G, Eq. (4b). In the fourth expression, we have used Lorentz reciprocity, Eq. (4a).
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4 Inverse Polarizability and Dispersion Equation

Equation (6) is a set of linear homogeneous equations with a 3 p x 3 p matrix M(w, q)
(we denote 3 p-dimensional quantities such as matrices and vectors by a straight
typewriter-style letters like M or f). Correspondingly, the dispersion equation has
the general form det[M(w, g)] = 0. The set of complex pairs (w, g) that satisfy
this equation is a rather complicated four-dimensional algebraic variety. To simplify
the problem, we can apply various physically motivated restrictions. For example,
we will consider further only real frequencies w. We will also use a more specific
expression for X, (w), which will allow us to disentangle the material and geometric
properties of the chain in the expression for M(w, q).

First, to ensure energy conservation and mathematical stability of numerical
results, we account for the first nonvanishing radiative correction to the quasi-static
polarizability of an ellipsoid [20] by writing

3

. . C2k7 4 w
X(w):otqsl(a))—lTl, k:@z. (11)

Here dqs(w) is the quasi-static polarizability, [ is the identity tensor, and k is
the wave number in the host medium. In the case of ellipsoids, dgs(w) can be
conveniently written as

3 ~ ~

A €pv u; @uj
(o) = 22 , 12
o) = Z n/le@) — en] + %] (12

where @; are three mutually orthogonal unit vectors, which define the principal axes
of the ellipsoid, and x; are the corresponding depolarization factors (x| +x +x3 =
1). The ellipsoid volume v is given in terms of the three semi-axes a; by

4
v = Tnalaza3 s (13)

and the depolarization factors »; can be expressed as functions of the two
independent ratios a;/a> and a; /az. Now we can easily invert (12) and obtain for a
generic ellipsoid

’;
4 €n . - . 263 .
el U0 | —1—=1T. 14
X(w) = v | @) —ep + ;%jllj Qu;j 1 3 (14)
It is notable that the scalar factor
s(@) = — (15)
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is independent of the ellipsoid shape while the tensor
3
K:=) ;@1 (16)
j=1

is independent of the material properties. The function s(w) defined in (15) is known
in the theory of composites as the Bergman—Milton spectral parameter. Further, the
radiative correction depends only on the frequency. We have therefore disentangled
the geometric and material properties of an ellipsoid. Returning to the problem at
hand, we can write for the v-th ellipsoid

. 1 A 263
@ = —[s@ 1 + K] —i5-1, a7)
By 3
where
€Uy
= . 18
By i (18)

Equation (17) is the expression we sought. Here only the geometric tensor K, and
the volume-related coefficient B, depend on the ellipsoid index. Note that all tensors
K, are symmetric, so that K, = K.

Although equation (17) applies to any material of the ellipsoids, we will special-
ize further to the case when this material is a Drude metal with the permittivity

(@) “) (19)
e(w) =€ — ———,

" w+iy)
where w), is the plasma frequency, and y is the relaxation constant. We then have

w@+iy)
(0 —enw(w+iy) — ol

s(w) =€y (20)

This expression becomes particularly simple in the case €g = €.
We now return to (7) and use the functional form (17) of x, (w). This results in
the equation

. 23 ,
s@dy=pFu| Y Sou(@,@)dy +i—5-dy | = Kudy . 1)

n=1

We need to find points in the two-dimensional region

;:{--5q§%;w>0} (22)



24 V. A. Markel

of the (g, w)-plane for which (21) has nontrivial solutions. Of course, this is possible
only if y = 0 in the Drude formula and then only for ¢ > k (above the light line).
To find the dispersion curves numerically, we will set y = 0 in the expression for
s(w) (20), so that

€ w?

s(w) —> sp(w) = 23)
y=0

(€0 — en)@? — w2

However, when simulating propagation due to an external excitation (e.g., by an
antenna), we will include finite losses in the model.

5 Algebraic Considerations

For each pair of indexes (v, ), the tensor S‘UM (w,q) is a 3 x 3 matrix. We can
arrange these matrices into a 3p x 3 p matrix S(w, g) as shown further:

Sn(w,CI) ~§12(qu) Sjlp(a)vCI)
$1(w, q) Sn(w,q) ... S, q)
S(w, q) = . (24)

$p1(@,9) Sp2(@,q) ... Spp(@, q)
We denote matrices of the size 3p x 3p by straight, typewriter-style letters such as
S. We can use (4) to show that
S, —q) =T (. 9) . (25)

We also introduce two block-diagonal matrices

Bl 0 0 K 0O 0

0 Bof... 0 0 Kr... 0
B=|............ |, K=|............|. (26)

0 0 ...8,1 0 0...K,

Then Eq. (21) takes the following form:
s(wyd=Ww, g)d, @7

where

2k3
W(w,q):B[S(w,q)+1TIi| - K (28)
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and d is a column-vector of dipole moments d, of the length 3 p:

d=[didy...... 4,]" . (29)

Equation (27) has nontrivial solutions if and only if one of the eigenvalues of W(w, g)
is equal to s(w).

5.1 Ellipsoids of Equal Volume

Let us first analyze the relatively simple case when B is proportional to the identity
matrix, B = BI. This happens if all ellipsoids are of the same volume (but not
necessarily of the same shape and orientation). Then the symmetry property (25) of
S(w, q) is inherited by W(w, q). Indeed, we have in the special case considered

2k3
W(w,q):ﬂ[S(w,q)—i-l?I} - K. (30)

Here I is the 3p x 3 p identity matrix. Since K is symmetric and independent of ¢,
we have

W, —q) =W (w,q) (if B, = = const) . (31)

It immediately follows that W(w, ¢) and W(w, —g) have the same eigenvalues.
Therefore, if a point (w, g) is on the dispersion curve, then (w, —¢g) is also on
the dispersion curve (because s(w) is independent of ¢g). We thus have proved the
following theorem:

Theorem 1 (Eigenvalues of W(w, g) for ellipsoids of fixed volume) For
structured chains made of general ellipsoids of equal volume, the following
Statements are true:

(1) W(w,q) and W(w, —q) share the same set of eigenvalues A;(w, q).
Therefore, the eigenvalues are even functions of q, i (@, —q) = Ai(w, q).

(ii) The dispersion curves q = q(w) are symmetric with respect to the line
qg=0.

Moreover, it is clear that, if f(w, ¢) and f(w, —q) are the right eigenvectors
of W(w, g) and W(w, —q), respectively, with the same eigenvalue A(w, g), then
f(w, —q) is a left eigenvector of W(w, q), and f(w, q) is a left eigenvector of
W(w, —q). Indeed, start from the definitions
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W, g)flw, q)=Mo,q) flo, q),
W, —q) f(w, —q) = Mo, 9) f(w, —q) . (32a)

Transposing the above equations and using (31), we obtain

o, ¢, —q)=rw,q (o, q),
() Ww, q)=rw,q) f (0, —q), (32b)

which proves the aforementioned statement.

Theorem 2 (Eigenvectors of W(w,g) for ellipsoids of fixed volume)
Assume that W(w, q) has 3p distinct eigenvalues \i(w, q) corresponding
to the eigenvectors fi(w,q), i = 1,2,...,3p. Then W(w, —q) has 3p
eigenvectors f;(w, —q) corresponding to the same distinct eigenvalues and
the two sets of eigenvectors are mutually dual bases so that

£ (@, —q) fi(0, ) = Zi(w, q) 8ji

with Zij(w, q) # 0 and Z;(w, —q) = Z;(w, q), where §;; is the Kronecker
delta-symbol.

Note that there is no complex conjugation in the orthogonality relation of
Theorem 2. We can still normalize the eigenvectors by the conventional condition

£, q) fi(w,q) =1. (33)

Here { denotes Hermitian conjugation (transposition and entry-wise complex
conjugation).

Proof The first statement of Theorem 2 is obvious. Eigenvectors of any non-
degenerate matrix form a basis, and W(w, g) and W(w, —q) share the same set of
distinct eigenvalues. To show that the two bases are dual, we can consider the matrix
element

£] (@, —q) W(w, q) £i (@, q) (34)

and use the relations (32). Acting with W(w, ¢) to the left and to the right, we obtain
the equality

i@, 9) £ (@, —q) fi(w, ) = 4j(@, q) £] (@, —q) fi(w, q) . (35)
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If j # i, the aforementioned equality implies that f]T (w, —q) fi(w, q) = 0. This
proves mutual orthogonality of the bases. It remains to show that Z;(w, g) # O.
Assume that Z; (@, g) = 0 for some i. We know that f]T (w, —q) fi(w, g) = O forall
J # i. Therefore, the set of f;(w, —g) with j # i forms the orthogonal complement
to f; (w, q). If, in addition, £; (w, —q) has zero projection onto f; (w, q), the set of all
vectors f;(w, —¢q) is the same orthogonal complement and therefore does not form
a complete basis in contradiction to the assumption that W(w, ¢) is non-degenerate.
Therefore, Z; (w, g) = 0 is not a possibility. O

We can now write the following spectral expansion for W(w, g) (assuming it is
not degenerate)

3p

1
W(w,q) =) T M@ DEe -0 (36)
i=1 ’

Remark 1 (Degeneracy of W(w, g)) If W(w, q) is degenerate but not defec-
tive (this means that its eigenvectors still form a complete basis), we can
always construct dual bases of eigenvectors of W(w, ¢) and W(w, —q) accord-
ing to the standard procedure. This case does not pose any difficulties, and
the statements of Theorem (2) remain true. However, W(w, ¢g) is, in general,
neither symmetric nor Hermitian, and proving non-defectiveness for matrices
with no special symmetry is usually difficult. From the physical point of view,
defectiveness occurs due to random degeneracy with a probability close to 0
and therefore almost never. In simulations, it is safe to ignore this possibility.

5.2 Ellipsoids of Varying Volume

It is clear on physical grounds that allowing the volume of ellipsoids to vary should
not cause any new effects. In fact, the spectral properties of W(w, ¢) remain in
this case almost the same (with a slight modification), but the proofs are more
difficult because B is no longer proportional to the identity matrix and the symmetry
relation (31) does not hold.

We start from the definition (28) where B is not necessarily proportional to the
identity matrix and write it in the form

 2k3
W(w,q) =BS(w,q) + i TB — K. 37
Next we change the sign of ¢ in the previous formula. This yields

.2k
W(w, —q) =BS(w, —q) + 1TB — K. (38)
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Using the symmetry property (25) of S(w, ¢g), we also have

2%3 r
Ww, —q) = |:S(a),q)B + iTB — K] , 39)

where we accounted for the symmetry of B and K. Let us denote the matrix in the
square brackets by U(w, q);

L 2k3
U(w, q) := S(w,q)B + ITB — K. 40)

We therefore have
W(w, —q) =U" (0. 9) . (41)

The matrices S(w, ¢) and B do not generally commute. For this reason, U(w, q) #
W(w, g). We will, however, prove that U(w, ¢) and W(w, ¢g) share the same eigenval-
ues. To this end, we will use the special properties of B and K. It will then follow
from (41) that W(w, ¢) and W(w, —¢q) share the same eigenvalues, even though these
two matrices are not transposes of each other.

Theorem 3 (Eigenvalues of W(w, g) for ellipsoids of variable volume)
Conclusions of Theorem 1 carry over to the case when the ellipsoids have
variable volume.

Proof We can prove Theorem 3 by noticing that B is diagonal, and all its elements
are positive and removed from zero (since the same is true for the volumes v,,). We
can therefore take the square root of B and, moreover, this operation is numerically
stable. Let B = DD. From the same arguments as earlier, D is invertible. We can use
these properties of B to write

2K -1 -1
Ww,q) =D DS(w,q)D+1TB—D KD |D™',

2k3
U(w,q) =D7! [DS(w,q)D + iTB -D KD_1j|D ) (42)

The key observation that we need is that D' KD = DKD~!' = K. This is easy to
verify directly. Denoting

263
Ws(w,q) :=DS(w,q)D + ITB — K, 43)
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we arrive at the result

Ww,q) =D Wy(w,q) D! ,
U@, ¢) =D 'W(@,¢)D . (44)
Here W (w, g) is the symmetrized form of W(w, ¢) (compare to Eq. 37). In the case

when B = BI, the two matrices coincide. It is now easy to see that W, (w, q), W(w, g),
and U(w, q) share the same eigenvalues. This proves Theorem 3. O

Theorem 4 (Eigenvectors of W(w, g) for ellipsoids of variable volume) Let
the symmetrized matrix Wy(w, q) have 3p distinct eigenvalues Ai(w, q), i =
1,2,...,3p with the corresponding eigenvectors fi(w, q). Then Df;(w, q)
and D~V £; (w, —q) are the right and left eigenvectors of W(w, q) with the same
eigenvalues. These two sets of eigenvectors are mutually dual bases.

The proof is obvious since Wy (w, g) satisfies the symmetry property (31), and all
conclusions of Theorem 2 hold for it verbatim. In particular, (36) holds for W, (w, q).
We can therefore use (44) to write

3p
1
(o, q) = mei(w,q)nfxw,q) £ (0, —q)D"". (45)

i=1
The statements of Theorem 4 can be verified directly by using this formula.
Remark 2 (Normalization) We assume that the vectors f; (w, g) (for posi-
tive and negative ¢g) are normalized by the conventional condition
£, ) fil@,9) = 1. (46)
Then the left and right eigenvectors of W(w, q),
gi(®,q) :=Dfi(w,q), gi(w,—q) :=D""fi(w, —q)

are not normalized. However, the overlap coefficients appearing in (45) are
the same for the normalized and not normalized bases, viz,

Zi(w,q) = Zi(w, —q) = £ (0, —q) fi(®, ¢) = ¢ (0, —q) 9i (@, q) .
(47)
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6 Forced Oscillations
6.1 Response to External Field

We now consider the response to an external field, e.g., produced by a source
antenna. To this end, we return to the coupled-dipole equation (2) and seek the
solution in the form of a Fourier integral

w/h
1 - .
diy = o f d,(&)elsds, v=1,2,....p. (48)
T
—n/h

Here d, (&) is the Fourier coefficient to be determined. A similar decomposition can
be written for the incident field:

w/h
1 .
e = 5 / &) etMdE, v=1,2,....p. 49)
2w
—7/h

Using the 3p-dimensional matrix notations introduced earlier and the expres-
sion (17) for ¥ (w), the coupled-dipole equation (2) can be written as

[s(@) I —W(w, §)]d(E) =Be(), (50)

with the obvious solution

() = [s(@) I —W(w, §)]”' B&E). (5D

We then substitute this result back to the Fourier integral (48) and find the real-space
solution

w/h

dﬂ:% / [s(w) I —W(w, )] B&E) el ds . (52)

—n/h

In this expression, d, is the 3 p-dimensional vector of dipole moments in the n-th
cell. The correspondence to the three-dimensional vectors d,;,,, that is,

dy=[dy dpy ... ... ] (53)

Next, we use the spectral expansion (45) to write

Dfi(w,£) £ (w, —£)D7!
s(w) — Ai(w, &)

3p
[s(@) T =W, 617" =) Zi(,§) (54)
i=1
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Substituting this result into (52), we obtain the spectral solution to the forced
oscillation problem:

w/h

3p T =

1 - Dfi(w,%) 1 (w,—§)De(§)

_ i&hn . i

b= f de Z 1 Zilw, ) s(w) — Ai(w, &) ' )
—/h =

In the special case when all ellipsoids are of the same volume v, this expression
simplifies to

w/h

3p T 3
_ EpV i&hn ) fi (C(), E) f[ (Cl), _E) e(g)
O = 872 / dse Zl Zie8) s(w) = Ai(w, §) . 0
—n/h =

6.2 Localized Excitation of a Surface Plasmon Polariton

Of special interest is excitation that is localized and, ideally, restricted to the
reference cell. This means that

€n =€, 8,0 . (57)
In this case,

e () =he, (58)

is independent of &, as can be easily verified by substitution into (49). In practice,

the source antenna will illuminate all particles in the chain. However, by using

directional antennas or by placing them close to the reference cell, we can minimize

such effects. Mathematically, however, the approximation (58) is convenient as it

allows one to compute the response due to some elementary excitations, whereas

more complex and realistic excitations can be considered by linear superposition.
Assuming (58) is true, we rewrite (55)

w/h 3p T
h ~ Dfi(w,§) £ (v, —§)De
_ i&hn § : . i
b= o f s, ]Z’(w’é) s@) = hi(@, &) &
—n/h 1=

where e is the 3 p-dimensional vector whose elements are the electric fields created
by the source antenna at the particles of the reference cell,

e = [61 € ... ... eP]T . (60)
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Equation (59) seems to be a small modification of (55) (the dependence on & and
the overhead tilde in €(§) are gone; note also the extra power of 4 in the overall
coefficient), but it will allow us to make further analytical progress as described
further.

For each w, the dominant input to the integral (59) is given by the values of
& such that the denominator s(w) — A;(w, &) is small. If the denominator could
turn to zero, the integral would be ill-defined. However, it cannot turn to zero
if there is some absorption in the particle material. The approach therefore is to
compute the dispersion curves by solving the equation s(w) = A;(w, &) with zero
absorption; then evaluate the integral (59) for some small but nonzero absorption.
In quantum mechanics, similar approximate evaluation of integrals is known as the
quasi-particle pole approximation. We write

s(w) = so(w) +io(w), (61)

where o (w) > 0 and so(w) = lim,_,¢s(w). A particular expression for so(w),
which can be used conveniently in numerical simulations, is given in (23). Then the
dispersion curves are obtained by finding all real-valued solutions to

so(w) = Aj(w, &) (dispersion equation for i-th mode) , (62)

where w > Oand —/h <& < m/h.

Not all modes may have such solutions at a given frequency w. Let us fix @ and
assume for simplicity that real values of & that satisfy (62) exist only for i = r (the
resonant mode). If such solutions exist for several values of i, a generalization is
easily obtained by summation over all resonant modes. Assuming for now that a
solution exists only for i = r, we may keep only one term in the summation of (59),
viz,

w/h
h - D£ (.£) £ (0. —£)De
_ i&Ehn r
dy= g [ el 70,0 2l R (63)
—n/h

Due to the symmetry of ;(w, &), roots of (62) always come in pairs. Consider the
simplest case when there are only two roots, § = +q(w), where g(w) > 0 for
definitiveness. The set of all points (w, g(w)) defines the dispersion relation of the
chain. We can expand A, (w, &) for & near the roots +¢(w) as

gw)—§&, &¢r q(o)
A, &) = so(w) — o (o) €(w) x . (64)
gw)+§, &= —qw)

Here the factor o(w) has been introduced for convenience and f£(w) is a new
independent coefficient. It may be computed numerically as
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Lw) = 1 () . (65)
o B g
Although we do not prove this statement here, A; (w, &) are real-valued for & > k
(where the solutions to the dispersion equation exist), and therefore, £(w) is also
real. The physical interpretation is that, below the light line, the SPPs propagate
without radiative losses. However, £(w) can be positive or negative. We say that
dispersion is positive at w if £(w) > 0 and negative otherwise.
We can now use (64) to rewrite (63), approximately, as

_ hZ(0.q())
" 270 (w) Uw)

x f [ d-@) - A (@) ]eié’m d . (66)
§+qw)+i1/l(w) §—q(w)—1/l(w)

In this expression,

di(@) =P (e, d_(0) =P (w)e, (672)
where

P, (@) :=D £ (0, q(®)) f] (®, —q(@))D. (67b)

Note that we have expanded the integration in (66) to the real axis. It remains
therefore to compute the integrals in (66). Consider first the case of positive
dispersion, £(w) > 0. Accounting for the general condition o (w) > 0, we arrive
at

di (), n>0

hZ (o, lig(@)~1/€@)lhln]
- o Q(ia;)()j) @) 14 @) +d-@].n=0 . (69

d_(w), n<0

dy

We thus see that, for a generic point (o, g ()) on the dispersion curve, it propagates
to the right and left of the excitation site with the wave numbers +¢(®») and —¢q (v),
respectively. The coefficient £(w) is the characteristic propagation distance, which
describes the exponential decay of the SPPs due to Ohmic losses. The amplitudes
of propagation to the right and to the left are in general not the same and given by
d+ (w) and d_(w) for positive dispersion, and vice versa for negative dispersion.
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7 Direction-Selective Coupling

Here we demonstrate direction-selective coupling of SPPs to local excitation
(confined to the reference cell C). The question we are asking is whether it is
possible to achieve direction-selective coupling by illuminating only the dipoles in
the smallest periodic element of the cell. The latter qualifier is important. There are
other means to excite SPPs propagating in a given direction only, but they require a
spatially extended source antenna with the length of many periods of the chain.
For example, the smallest cell in a simple linear periodic chain consists of just
one particle, and local direction-selective coupling in such chains is impossible.
More generally, local direction-selective coupling is not possible in chains that are
invariant under the reflection Z — —Z. Indeed, if the chain has this property, the
matrix W(w, ¢g), in addition to the fundamental relation (31), is also symmetric, so
that W(w, q) = W (w, q) = W(w, —q). It is easy to see from (43) that, in this case,
dy =d_.

However, in a chain without the reflection symmetry, W(w, ¢) is not symmetric.
We can exploit this property to achieve direction-selective coupling with a fairly
good precision. Indeed, at a frequencies corresponding to positive dispersion,
direction-selective coupling to SPPs propagating to the right of the reference cell
(in the positive Z direction) occurs if d4 7% 0 but d— = 0. It can be seen from (68)
that, within the precision of the approximation made, the dipole moments in the
cells with n < 0 are in this case zero. Similarly, the SPP would propagate to the left
of the reference cell if d_ # 0 but d+ = 0. For negative dispersion, the directions
are reversed.

7.1 Directional Chain with Three Particles Per Cell

There are several simple geometries of the reference cell that we can investigate for
the purpose of providing examples. Here we illustrate how the direction-selective
coupling can be achieved using the simple geometry illustrated in Fig. 2. Assume
that the polarization is out-of-plane (along the Y-axis) and the particles are identical
prolate spheroids whose major axis is aligned with Y. Figure 2 can be regarded as
the “top view” of the waveguide. Further, we provide some analytical results for
this geometry and illustrate the accuracy of the approximation that was made in
evaluating the integral (59).

Since the Cartesian components of the dipole moments along X and Z are zero
in the considered geometry and only the Y-components enter the equations, the size
of W is effectively 3 x 3. The algebraic structure of W(w, ¢) is (regardless of w and q)

Wil Wi2 W3 a b c
W= |wy wpwy|=|d a df. (69)
w31 W3 w33 c b a
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Fig. 2 Schematic illustration of the discrete waveguide for which direction-selective coupling is
possible

Here we accounted for the symmetry relations

Wi =Wy = W33 =4,
wp=w3y =b,
w13 = w3y =: ¢,

wy = w3 =:d, (70)

which are specific to the considered geometry. It is possible to prove that, for g > «,
a and c are real while d = b*. Therefore, W is neither symmetric nor Hermitian.
This fact will allow us to achieve direction-selective coupling. The matrix has three
distinct eigenvalues

¢ —A/c? 4+ 8bd ¢+ +/c? +8bd
M=a—c, dp=a+ SE T ma SEEEEEE L g

It can be seen that for ¢ > k all eigenvalues are real. The dual bases of right and left
eigenvectors, f; and g;, are

_J2 _ r SR r
fi=[-101]", fzz[lﬂl},g:[lwl];

2b 2b
T T
T ) — V2 _
gi=[-101], 92=[1M1} : 93=[1M1] :
2d 2d
(72)

The orthogonality relations are, as expected, fiT gj = Z; §;j with
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c(c—l—m)

Z\=2, Zy=Z7Z3=4 73
1 2 3 + T (73)

In addition, we have the following relations
£ £5=2(1-d/b), 9595 =2(1-b/d). (74)

We now have all the ingredients to build a source that couples only to the SPPs
that propagate in a given direction. Assume that the pair (w, ¢) is on the dispersion
curve for the 2-nd mode, in other words, satisfy the equation so(w) = t2(w, q).
Then we can apply the theory of Sect. 6.2. In particular, we have

di=frgl e, d-=g fle, (75)

where all quantities should evaluated at the selected dispersion point (w, g). If we
choose e = f3, we will have d4 = 0 and d— = 2(1 — d/b)gy # 0. If we choose
e = g3, thend_ = 0and dy = 2(1 — b/d)f, # 0. Therefore, by using the right
phase relations for the incident field, we can send the wave in either direction.

7.2 Numerical Example

To illustrate the effect numerically, we take the lattice period of the chain shown
in Fig.2 to be & = 25.3nm and the spheroid semi-axes a, = a, = 6.325nm
and ay, = 42.166...nm, so that the proportions are ay = a, = 0.25h = 0.15a,.
The transverse width of the waveguide is H = 2h = 50.6 nm and the shift of the
central dipole is § = 0.25h = 6.325 nm. Particles are made of a Drude metal with
€p = 5.0 and the wavelength at the plasma frequency in vacuum A, = 27¢c/w), =
136.1 nm, which is characteristic of silver. The host medium is assumed to be a
transparent dielectric with €;, = 2.5. These parameters and the geometry shown in
Fig. 2 characterize the waveguide completely.

We have solved the dispersion equations so(w) = A;(w, g) by the method of
bisection. The dispersion curves for all three modes of the waveguide are shown in
Fig. 3. The i = 1 mode does not involve the central dipole (which is identically zero
for this mode), and therefore, it is not very different from the mode of a simple linear
chain made of the same spheroids. The dispersion curve for the latter case is shown
by a thin red line for comparison. As the eigenvectors f; = g; are orthogonal
to all other eigenvectors, the i = 1 mode cannot be used for direction-selective
coupling. However, we can use to this end the i = 2 and i = 3 modes. Without
loss of generality, we choose i = 2. The point (kh/m, gh/m) = (0.12, 0.5) belongs
to the i = 2 dispersion curve as is shown by the arrows in Fig. 3. Note that, at
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the normalized frequency kh/m = 0.12, there exist two solutions to the dispersion
equation, one with i = 1 and another with i = 2. However, the i = 1 mode is
antisymmetric and will not be excited. We can therefore focus on the i = 2 mode
alone.

Having fixed a point on the dispersion curve (kh/m, gh/m) = (0.12,0.5), we
have used numerical summation to compute the matrix elements wi; = a, wip = b,
w13 = ¢, and wy] = d. We then used (72) to find the eigenvectors. In this manner,
we arrived at the numerical result

f3=[1 —(1.37131 4+ 0.471286i) 1]T,
g3 =[1 —(1.37131 —0.4712861i) 1]T. (76)

The theory predicts that, if we use e = £3 or e = g3 at the normalized frequency
kh/m = 0.12, the resulting SPPs will propagate only in one direction from the
excitation site. We show that this is indeed the case by finding the solution to
the coupled-dipole equation (2) directly. We have solved the equations in a chain
consisting of 8,000 unit cells with the small relaxation constant y /w, = 0.0005
(smaller than in realistic metals). Only three dipoles in the central (reference) cell
were illuminated, and the incident field amplitudes were given either by £3 or by g3
whose components are listed in (76).

The results are shown in Fig.4. When interpreting Fig. 4, it should be kept in
mind that dispersion at kh/mw = 0.12 is negative. Therefore, when we take e =
g3, we have d_ = 0 and dy # O, but the excitation propagates to the left (in
the negative Z direction). In any event, we have demonstrated that, by changing
the phase relations of the localized source, we can send the excitation either to the
right or to the left, with a high efficiency. We note that the quantities shown in
the figure are linear in dipole moments; the energy-related quantities are quadratic.
Therefore, the ratio of energy propagating to the left and right in any of the two
excitation schemes illustrated in the figure is of the order of 10*, which quantifies
the directionality of excitation.
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Fig. 4 Unidirectional
propagation of SPPs in the
chain shown in Fig. 2 at the
dimensionless frequency
kh/m = 0.12 and for the
Drude relaxation constant
y/wp = 0.0005. Only three
dipoles in the reference cell

n = 0 are illuminated either
with the amplitudes e = £3 or
e = g3, as labeled. Only the
central part of the chain [dno |
consisting of 8,000 cells is
shown. Dipole moments for

v = 3 are identical to those
with v = 1 and are not shown

—1000 —500 0 500 1000

8 Discussion

Several aspects of the aforementioned numerical demonstration require additional
discussion. First, we have used an unrealistically small value of the Drude relaxation
constant, ¥ /w, = 0.0005. This was done to demonstrate the accuracy of the
approximation, which allowed us to evaluate the integral (59) analytically. In Fig. 5,
we show the same computation with y/w, = 0.002, which is the characteristic
value for silver. It can be seen that in this, more realistic case, the SPP can still
propagate unidirectionally over 100 unit cells (about 2.5 pum for the parameters used
in the simulation) without significant decay of the amplitude.

In the geometry considered earlier (discrete waveguide made of relatively small
particles embedded in infinite free space or a transparent dielectric), the material of
the waveguide must be metal. Otherwise, the dispersion relation so(w) = A (w, )
does not have real-valued solutions. If we relax the assumptions that the particles
are small and the surrounding space is infinite and homogeneous, it may be possible
to use other materials such as transparent dielectrics. Familiar examples include
optical fibers and dielectric slab waveguides. In the conventional implementation,
these waveguides are not directional and therefore do not allow direction-selective
coupling. However, we can give the dielectric waveguides a sense of direction by
corrugating them (i.e., by introducing voids) so that the inversion symmetry is lost.
It is therefore possible to reproduce the effect described earlier in waveguides with
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Fig. 5 Same as in Fig. 4 but oo |
for y /w, = 0.002

10} .
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very low losses, although numerical demonstration of this possibility is much harder
as the dipole approximation is no longer applicable to such waveguides.

In the metallic discrete waveguides described earlier, low losses may in fact be
problematic. If the SPP reaches the physical end of the chain without significant
decay, it may be reflected. Transient pulses can traverse the chain several times
reflecting back and forth from the chain ends creating noise. In Fig. 6, we show
that the problem can be ameliorated by introducing absorbing traps at the physical
ends of the chain. One may think of these traps as detectors. The simulation of
Fig. 6 was performed in a very long chain with zero absorption (y = 0) everywhere
except at the chain ends where it increases exponentially from 0 to 0.05w, over
the length of 100 cells. It can be seen that reflections in this case are completely
suppressed.

Finally, it may seem that the excitation scheme used earlier where the source
antenna illuminates only particles in the reference cell is artificial. A real antenna
would illuminate all particles in the chain, albeit with a variable amplitude. The
excitation scheme, however, is physical and in fact quite natural as we will now
explain. Let us assume that the external fields e,, in (2) are localized according
to (57) and therefore are zero for all n # 0. We can iterate (2) once by writing

dy = ay(w)e, + d;w . 77
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Fig. 6 Unidirectional SPPs [dns | ' ' '
in a chain of 8,000 unit cells
made mostly of nonabsorbing 10 - ]
particles but with absorbing
traps at both ends. The Drude Lr e=13
relaxation constant increases
exponentially near the chain 10! F v—1 E
ends as yp exp(—pm) where P v=2 ——
Yo/wp =0.05, =00l and 102 f -
m is the distance to the chain
end in units of /. The traps 103 L L L n
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would occur otherwise
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In the adopted excitation scheme, we have d,,, = dJ,,, for all n # 0, the difference
being limited to the reference cell. By substituting (77) into (2), we find that the
dipole moments d,, satisfy

W) d,, =e,, + Z G (Cny, Ty @) d,, (78)
() )
where
)
€, = Z G (Fy, Yop; @) &p(w)ey, . (79)
Ou)2)

Equation (78) is similar to (2) but has a different source term, €/,,,. This modified
term is the field of an antenna consisting of the particles of the reference cell whose
active (that is, externally controlled) dipole moments are df,source) = a,(w)e,. Thus,
for all dipoles except those of the reference cell, the localized excitation scheme
considered earlier is equivalent to the excitation scheme in which the particles of
the reference cell are themselves an active source of radiation (the antenna). This
alternative excitation scheme is illustrated in Fig. 7. We conclude that the direction-
selective coupling can be achieved if the reference cell (located arbitrarily inside a
chain) is an externally controlled active antenna.
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Fig. 7 Discrete waveguide similar to that of Fig.2 but here the particles of the reference cell
comprise an active antenna (the source of electromagnetic field) and have the externally controlled
dipole moments d(*°"™®)_ This excitation scheme is equivalent to the localized excitation scheme

considered elsewhere in this chapter for all cells with n # 0 provided that dl(,source) = a,(w)e,.

The relation must hold at the working frequency for a monochromatic excitation or point-wise in
Fourier domain for transient excitation

Appendix

The Green’s tensor for Maxwell’s equations is singular. The singular part appears
implicitly in the definition of the polarizability tensor &, (w) but not in the coupled-
dipole equation (2) or the definitions of the dipole sum (8). We therefore focus on
the regular part of the Green’s tensor, which gives the correct expression as long
as r # r’. In terms of the scaled coordinates, the dimensionless Green’s tensor
appearing in (2) is given by

A 2 1Y » z 3 3 .
G(r,r/;w):[(w_+l_g__3>,+(_w__l_;)+_3> @]em,
o P P P P P P

(80)

where p = r — r’ the symbol ® denotes tensor product, and I is the identity tensor.
Note that p = |p| = (03 + p; + pD)'/%.

Let o, B = x, y, z label the Cartesian components of vectors in a rectangular
frame. Then we can rewrite the aforementioned expression in components as

2 : 2 .
w 1w 1 w 3iw 3\ parp] ;
G (I',r/;(,())=|:(—+———)8 +<——__+_) elwp’
“ p 2 p3)%F o o2 T 3) T2
(81)
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Survey and Perspectives on Line-Wave )
Electromagnetics Qe

Massimo Moccia (%), Marino Coppolaro (%, Giuseppe Castaldi (),
and Vincenzo Galdi

1 Introduction and Background

Electromagnetic waves, which generally extend in three dimensions, can exhibit an
evanescent character when interacting with matter, resulting in their localization
within a lower-dimensional space. A prominent example of this phenomenon is
given by “surface waves” (SWs), which are tightly bound to a surface and propagate
parallel to it [1] (see, e.g., Fig. la). These include surface plasmon polaritons,
Bloch/Tamm waves, and Dyakonov waves, among others. The subwavelength con-
finement and field enhancement at the interface are crucial for various applications,
such as chemical and biological sensing [2], nonlinear electromagnetics [3], and
quantum electromagnetics [4].

This research area is experiencing renewed interest, spurred by the advent of
artificial “metasurfaces” [5] and natural low-dimensional materials like graphene.
These materials support SWs [6], whose propagation [7] and radiation [8] can be
precisely controlled by locally tailoring surface properties. Additionally, they are
easily integrable into planar microwave or photonic architectures.

Recent theoretical [9] and experimental [10] studies have demonstrated a new
type of SW that propagates along an abrupt discontinuity between metasurfaces
characterized by dual (capacitive—inductive) surface reactances. These waves,
known as “line waves” (LWs), retain the out-of-plane localization typical of conven-
tional SWs but also exhibit in-plane localization along the discontinuity (Fig. 1b).
This unique feature allows them to transport energy along a one-dimensional (1D)
track.
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Fig. 2 Numerically computed modal effective index of an LW propagating at an interface between
two reactive metasurfaces with normalized surface reactances x4 and x_, for various parameter
combinations. The inset shows the field map of a typical mode. Reprinted from Ref. [9] under CC

BY 3.0

LWs exhibit remarkable properties, including deeply subwavelength localization
and field enhancement. As shown in Fig.2, at a junction between two reactive
impedance surfaces with opposite-signed reactances (capacitive—inductive), the
effective mode index can approach infinity when the reactances are perfectly
matched in magnitude but opposite in sign [9]. This singular behavior results
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Fig. 3 (a) Numerically computed field maps of an LW propagating at an interface between dual
(capacitive—inductive) metasurfaces, with direction-dependent polarization (pseudo-spin states)
excited by electric and magnetic Hertzian dipoles in phase (above) or out of phase (below). (b)
Field map illustrating the robustness with respect to bending effects. (¢), (d) Illustration of chiral
coupling effects induced by circularly polarized sources (left- and right-handed, respectively).
Reprinted (adapted) with permission from Ref. [10]. Copyright ©2017 American Physical Society

Fig. 4 Illustration of a graphene-based reconfigurable LW platform at THz frequencies. ( a)
Arbitrary-shaped pathways. (b) Delay lines with tunable phase-shift capabilities. (¢) Magic-T
coupler based on spin-filtered channels. Reprinted from Ref. [15] under CC BY-NC-ND 4.0

from the idealized assumption of a perfect discontinuity in surface impedance
and vanishes with a more realistic, continuous yet sharp transition. Despite this,
very high localization remains achievable. Additionally, LWs are characterized
by wide bandwidth, propagation-dependent polarization, robustness, and potential
reconfigurability [9, 10].

These characteristics make LWs highly promising for various applications,
including integrated photonics, high-frequency communications, and optical sens-
ing. Notably, LWs also exhibit topological-like robustness (see Fig. 3a, b) [10, 11],
although there are some differences compared to topological photonics [12]. They
also retain the spin-momentum locking properties typical of evanescent waves [13],
which enable intriguing chiral-coupling effects (see Fig. 3¢, d) that are of significant
interest for quantum optics and valleytronics [14]. Furthermore, implementations
at THz frequencies using gate-tunable graphene sheets have been proposed [15],
suggesting exciting possibilities for dynamically reconfiguring wave pathways,
confinement, and polarization states (see Fig. 4).

More recently, new classes of LWs have been demonstrated in settings with non-
Hermitian (i.e., gain/loss) [16, 17] and anisotropic [18, 19] properties. However, due
to the lack of simple analytical models, a clear and comprehensive phenomenologi-
cal understanding is still missing, along with a thorough taxonomy of the classes of
materials that can support LWs.
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Experimentally, proof-of-concept demonstrations have been confined to the
microwave range, where capacitive and inductive metasurfaces can be easily
fabricated through suitable metallic texturing. Existing studies have primarily
concentrated on waveguiding, field enhancement, topological properties, power
routing/dividing, filtering, and coupling effects [10, 20-22]. However, no experi-
mental results are available yet for reconfigurable effects or higher frequencies.

In this chapter, we offer a concise overview of the key developments in this
emerging research area. Specifically, Sect.2 addresses the modeling aspects from
both analytical and numerical perspectives. Section 3 presents a selection of results,
including potential material platforms, physical properties, and coupling effects.
Finally, Sect.4 provides concluding remarks, highlighting open challenges and
suggesting potential research directions.

2 Modeling Aspects

2.1 Problem Formulation

Referring to the geometry illustrated in Fig. 1b, we consider a planar metasurface
situated in vacuum on the x — z plane. In the simplest scenario, this metasurface is
characterized by an isotropic impedance boundary condition [23]:

E = Z(0uy x Hly_yg, ()

[T32]

with the subscript “;” denoting the tangential component, and u is a unit vector in
the u,-direction. We henceforth assume a time-harmonic dependence of exp(—iwt)

and a piecewise continuous impedance distribution with a jump at the x = 0
interface:
Z1 x <0
Z(x) = ’ ’ 2
x) {Zg, x > 0. 2)

Alternatively, surface properties can be described using different parameters. For
instance, in the case of 2D materials such as graphene, the optical conductivity is
commonly used. This conductivity is related to the surface impedance by [15]:

o=, 3)
where the factor of 2 accounts for the two-faced nature of a free-standing layer.

As is well known, purely reactive impedance surfaces (i.e., with purely imag-
inary Zi») support SWs that exhibit either transverse-electric (TE) or transverse-
magnetic (TM) polarization, depending on whether the surface is capacitive or
inductive, respectively [23]. These SWs propagate without attenuation within the
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x — z plane and decay exponentially in the out-of-plane direction (i.e., along
¥). A surface-impedance discontinuity can induce additional in-plane localization,
leading to field decay along the x-direction away from the interface. For instance,
in a capacitive—inductive junction, this localization can be attributed to the TE/TM
polarization mismatch occurring at the x = 0 interface [9, 10] (see also Fig. 2).
However, this is not the only possible mechanism. Consequently, the resulting wave
object is localized both in-plane and out-of-plane, concentrating around the line at
x = 0, and is therefore referred to as an LW.

From a mathematical perspective, the problem involves finding the source-free
solutions to the boundary-value problem defined by Eqs. (1) and (2). Specifically, it
entails identifying the combinations of Z; and Z; that lead to LW behavior.

2.2 Analytical Approaches

While the aforementioned boundary-value problem described can be seen as a
lower-dimensional analog of the SW problem (Fig. 1a), its analytical treatment is
significantly more complex.

In [24], an exact analytical solution to the LW eigenproblem was derived by
adapting a generalization of the Sommerfeld—Maliuzhinets method for scattering
from impedance wedges [25, 26]. Alternatively, the Wiener—Hopf technique could
also be applied [27]. These methods could, in principle, be extended to handle
axially anisotropic impedances [28]. However, even in the simpler isotropic case,
the resulting formulation is complex and lacks a clear physical parameterization.

Several analytical approximations have been proposed for this problem. In
particular, approximations in the electrostatic limit [29] are generally inadequate for
deriving the dispersion equation. More recently, in [19], a nonlocal integral equation
formulation for general tensor impedances was introduced. In certain cases, this
formulation can be reasonably approximated by a local differential equation, where
LWs serve as 1D analogs of surface plasmons bound to nonlocal metals.

2.3 Numerical Approaches

For a rigorous and comprehensive treatment of the problem, full-wave numerical
approaches are generally required.

In this context, general-purpose methods like finite element analysis [30] can
naturally manage arbitrary (scalar and tensor) impedance combinations and multiple
discontinuities. However, these methods still fall short in providing clear physical
insights and are not well-suited for addressing critical aspects such as complex-
valued eigenmodes and nonlocal effects.

In [31], a spectral method of moments was introduced for modeling LW
waveguides. This approach not only offers computational efficiency and accuracy
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but also accommodates general anisotropy and spatial dispersion. Additionally, it
can naturally handle both proper and improper eigenmodes, providing a physically
insightful framework for studying LWs.

The numerical studies presented here are conducted using the finite-element
commercial software package COMSOL Multiphysics [30].

3 Selected Results

In the following sections, we review recent findings involving material combinations
beyond the conventional capacitive—inductive case. These include non-Hermitian
platforms with spatial modulations of gain and loss, as well as anisotropic materials.
Additionally, we explore peculiar phenomena related to LW propagation, such as
leakage and coupling effects, both in-plane and out-of-plane.

3.1 Non-Hermitian Junctions

In [16], a new type of LW was demonstrated at a planar surface-impedance discon-
tinuity characterized by the same reactance but with oppositely signed resistance.
Referring to the geometry in Fig. 1b, this configuration involves choosing:

Zi=—-R+iX, Zy=R+iX, “)

which represents a transition from gain to loss. The underlying localization mecha-
nism relies on the parity-time (7)) symmetry condition:

Z(x) = —Z*(x). 5)

Originally introduced in non-Hermitian quantum mechanics [32], this concept
has been extended to optics [33] and other branches of wave physics [34]. In this
context, the two halves of the metasurface individually support attenuated (x >
0) and amplified (x < 0) SWs, with TM (X < 0) or TE (X > 0) polarization.
The resistance discontinuity creates an additional in-plane localization mechanism,
resulting in an LW that propagates along the interface at x = 0 with a real-valued
propagation constant k,, experiencing neither attenuation nor amplification. This
phenomenon can be seen as a 1D analog of the SWs supported at interfaces between
PT-symmetric metamaterial slabs [35, 36].

Unlike conventional LWs in capacitive—inductive metasurface junctions [9, 10],
these non-Hermitian variants can also exhibit an out-of-plane “leaky” (radiative)
regime for specific values of the complex surface impedance. As shown in Fig. Sa,
the transition from the bound (k; > k) to the leaky [Re(k;) < k] regimes occurs at
the unit-circle |Z|/n = |Z| = 1, where k = w/c = 27 /A represents the vacuum
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a mm Bound Leaky b

0
R=R/n

Fig. 5 Non-Hermitian LWs. (a) Partition of the Z complex plane separating the bound (purple-
shaded) and leaky (orange-shaded) modes. (b) Effective index k;/k of bound modes, computed
analytically (solid curves) and numerically (markers), as a function of the gain/loss parameter
R, for representative values of the normalized (capacitive) reactance X. Reprinted (adapted) with
permission from Ref. [16]. Copyright ©2020 American Chemical Society

wavenumber, and ¢, A, and 1 denote the corresponding wavespeed, wavelength,
and intrinsic impedance, respectively. Here and henceforth, the overbar denotes
normalization with respect to the vacuum intrinsic impedance 7.

For the bound regime, Fig.5b illustrates the characteristic behaviors of the
modal effective index as a function of the surface-impedance parameters, com-
paring the analytic predictions with full-wave (finite-element) computations [30].
The more realistic scenario of a smooth (though steep) surface-impedance pro-
file was also numerically investigated [16]. Figure 6 illustrates representative
modal-field distributions, revealing the hybrid character (with generally nonzero
z-components) similar to conventional LWs [9, 10], but also highlighting some
important differences. Notably, there is a transverse energy flow (Fig. 6¢) that results
in anomalous near-field forces [37], potentially useful for microfluidics and micro-
optomechanical systems.

Figure 7 demonstrates the out-of-plane leakage effect. As illustrated in Fig. 7a,
in this case, the out-of-plane confinement is lost, allowing the field to couple with
the radiation continuum. As a result, Fig. 7b shows that propagation along the
z-direction is attenuated as power progressively leaks out-of-plane. The far-field
radiation pattern in Fig. 7c is consistent with leaky-wave radiation [38].

Similar to the conventional case, non-Hermitian LWs have demonstrated chiral-
coupling properties with respect to circularly polarized sources [16]; however, spin-
filtered waveguiding is generally not achievable.

Additionally, gain—loss imbalanced configurations have been explored [16] to
achieve lasing (or coherent perfect absorption) and in-plane leakage effects (see also
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Fig. 6 Non-Hermitian LWs.
(a), (b), (c) Numerically
computed distributions
(z-components as false-color
maps, x and y components as
vector plots) for electric and
magnetic fields, and
powerflux, respectively, for a
bound mode (R =X =0.5;
|Z| < 1). Reprinted (adapted)
with permission from Ref.
[16]. Copyright ©2020
American Chemical Society
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Fig. 7 Non-Hermitian LWs. (a), (b) Numerically computed in-plane (y = 0.01X%) and out-of-

plane (x = 0) electric-field magnitude maps in false-color scale, respectively, with R =1.1and
X = 0.1(]Z] > 1), showing the out-of-plane leakage effect. (¢) Corresponding radiation pattern.

The field is excited by a y-directed elementary electric dipole placed ak = z = 0 and y = 0.021.
Reprinted (adapted) with permission from Ref. [16]. Copyright ©2020 American Chemical Society
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Sect. 3.3). Potential THz implementations based on photoexcited graphene have also
been proposed [16], with optical pumping offering an intriguing reconfigurability
mechanism. At high frequencies, this mechanism could be more feasible than a
capacitive—inductive transition.

The reader is also referred to [17] for additional results on non-Hermitian LWs.

3.2 Isotropic-Anisotropic Junctions

In [18], a junction between an isotropic metasurface and an anisotropic, reciprocal
one was investigated, as schematically illustrated in Fig. 8. The isotropic half is
characterized by a surface conductivity o;, while the anisotropic half is described
by parallel and orthogonal surface conductivities o) and o, respectively. The
optical axis of the anisotropic metasurface can be rotated by an angle ¢. In the
in-plane (x, z) reference system, this metasurface can be equivalently represented
by a symmetric tensor Og with components:

Oy = 01 cos® ¢ + oy sin® @, (6a)

07; = 0| cos? ¢ + o sin® p, (6b)

Ox; = 07 = (0L — 0)) cos @ sin . (6¢)
Ak‘y

Fig. 8 Schematic of a planar junction between an isotropic metasurface and an anisotropic,
reciprocal one with slanted optical axis. The wavy arrows depict a GLW that propagates
unattenuated along the interface x = 0 and exhibits an oscillatory decay both in-plane and out-
of-plane in the anisotropic halfplane x > 0. Reprinted with permission from Ref. [18]. Copyright
©2023 American Chemical Society
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Fig. 9 Isotropic—anisotropic a T T T c
junction. (a) Numerically
Re(E,)

computed field-map of a 0.04

GLW eigenmode for 'max-:lmax
o; =i0.055y71,

o, =—i0.011y7",

o) =i0.041n71, ¢ = 27°.
(b), (¢) Corresponding cuts L |
(blue-solid) at y = 0.001x

and x = 0.0054)., -
respectively, compared with b -01 0 01
theoretical predictions 1r 1 Re(Ey)
(red-dashed) obtained from L\Ll/ 05
the study of the iso-frequency ') == Numerical
contours. Reprinted (adapted) o 0 — Theory
with permission from Ref. —0.5 L L
[18]. Copyright ©2023 -0.1 -0.05 0 0.05 0.1
American Chemical Society X/A
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Unlike previous cases, no analytical solutions are currently available for this con-
figuration, necessitating the use of full-wave numerical simulations [30]. However,
useful physical insights can be gained by analytically studying the SWs supported
by the anisotropic half, assuming that it extends infinitely. As detailed in [18],
this configuration can support conventional LWs for either elliptic or hyperbolic
anisotropy if the optical axis is aligned with the interface (¢ = 0, 7 /2). Conversely,
for a slanted optical axis, a unique form of LW emerges, propagating without
attenuation along the interface (i.e., z-direction), while decaying with an oscillatory
behavior both in-plane (i.e., along x) and out-of-plane (i.e., along y). These modes
can be viewed as the 1D equivalent of the “ghost waves” [39-41] and “ghost surface
polaritons” [42] observed at interfaces between isotropic and biaxially anisotropic
lossless media. These nonuniform waves exhibit complex-valued wavevectors (with
nonzero real and imaginary parts) even in the absence of material losses, thus
blending characteristics of both propagating and evanescent waves. This hybrid
nature may have significant applications in various fields, such as nonlinear optics
and sub-diffraction imaging.

Figure 9 illustrates a numerically computed ghost-LW (GLW) mode supported
by a suitably designed inductive-hyperbolic junction, with anisotropic parameters
compatible with those reported in the literature for a thin layer of ¢-MoO3 [43].
This mode demonstrates deeply sub-wavelength localization and oscillatory decay
within the anisotropic half. It has been shown that the spectral region admitting
GLWs is critically dependent on the rotation angle of the optical axis [18].

For additional insights, the reader is referred to [19], which provides an approx-
imate analytic approach to studying anisotropic junctions. Notably, the oscillatory
decay associated with GLWs has been explained through an effective gauge field
induced by the surface anisotropy.
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Fig. 10 Schematic
illustration of the flatland
leaky-wave mechanism.
Reprinted (adapted) from
Ref. [44] under CC BY 4.0

o
'
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3.3 Flatland Leakage

In [44], a novel LW radiation mechanism was explored, inspired by conventional
leaky waves but restricted entirely to in-plane propagation. This differs from the
mechanism discussed in Sect.3.1 (see Fig.7), which features instead a fast LW
radiating out-of-plane.

Let us consider a purely reactive metasurface (in the x-z plane, embedded in
vacuum), characterized by a surface impedance Z = iX (Fig. 10). As previously
noted, depending on the sign of X, this metasurface can support an SW with either
TE or TM polarization and an in-plane propagation constant given by [23]:

X 2
kl+<—), X <0 (TM),
b = n ™)

k1+<%y, X>0 (TE).

Additionally, let us assume a wave propagating along the z-direction with a
complex-valued propagation constant k, = 8, + i, where ;,a; > 0 and k <
B; < k;. In this scenario, the wave remains confined out-of-plane (exponentially
decaying along the y-direction) and exhibits a complex-valued propagation constant
along the x-direction, k, =, /k,2 — k% = By —iay, with @, > 0. This represents the
“flatland” analog of conventional leaky-wave scenarios [38], where the radiation is
entirely confined in the x — z plane. Despite the seemingly unphysical exponential
growth along the x-direction, this wavefield can effectively model in-plane radia-
tion, with the parameters §, and o, controlling the radiation direction 6y (measured
from the z-axis) and the beamwidth, respectively. Specifically, in the regime o, <
B, the wave radiates a directive SW beam at an angle 6y = arccos(B;/k;). This is
formally analogous to observations in conventional leaky-wave scenarios [38], with
the SW propagation constant replacing the vacuum one. This concept is also related
to the recently observed phenomenon of 2D Cherenkov radiation [45].
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Fig. 11 (a) Schematic of non-Hermitian configuration supporting flat leaky waves. ( b) Numeri-

cally computed in-plane field map (electric-field magnitude, at y = 0.011), for R = X = 0.5. The
field is excited by a y-directed elementary electric dipole placed atv = z = 0, y = 0.021. The
plot is restricted to the lossless region x < 0. Reprinted (adapted) with permission from Ref. [16].
Copyright ©2020 American Chemical Society

The question then arises: how can a wavefield with these characteristics be
physically realized? A straightforward example was provided in [16] within a
non-Hermitian LW scenario. As illustrated schematically in Fig. 11a, a planar
junction between a lossy reactive metasurface and a lossless one can support an
LW propagating along the interface, characterized by a complex-valued propagation
constant with the desired properties. Figure 11b shows an example derived from
the P7-symmetric configuration in Fig.6 by switching off the gain (ie., Z; =
i0.5, Zz = 0.54i0.5). As observed, two directive beams are obtained in the lossless
region, with symmetry due to the bidirectional propagation induced by the dipolar
excitation considered. However, relying on losses is suboptimal for efficiency. Thus,
alternative configurations featuring purely reactive components can be conceived to
achieve similar effects.

In an alternative configuration, illustrated in Fig. 12a, a planar junction between
two semi-infinite dual (capacitive-inductive) metasurfaces with surface impedances
Z1 and Z3, respectively, separated by a strip of width d and surface impedance
Z, (of same type as Z3), can support this type of phenomenon. Referring to
[44] for more details, the surface impedances Z; and Z, are selected such that
the corresponding junction supports an LW that decays both in-plane and out-
of-plane as d — oo. However, for finite values of d, the LW leaks power into
the adjacent semi-infinite region of surface impedance Z3, radiating a directive
beam. Remarkably, this mechanism enables the control and possible scanning of the
beam direction via gate-tunable 2D materials such as graphene. Figure 12b—d show
numerically computed results (near-field in-plane maps) for three representative
configurations, achieved by varying the surface impedance Z. These results exhibit
the typical characteristics of leaky-wave radiation, with different beam directions
observed for each configuration.

Alternative configurations supporting flat leaky waves, which do not necessarily
rely on LWs, can also be conceived [44].

The reader is also referred to [46] for an experimental study at microwave
frequencies.
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O I TN max

Fig. 12 (a) Schematic of fully reactive configuration supporting flat leaky waves. ( b), (¢), (d)
Numerically computed field maps (electric-field intensity, at y = 0.001%), for d = 0.21, Z =
—i0.067, Z3 = —i2, and Z; = i4, i6.67, and i100, respectively. The field is excited by a y-
directed elementary electric dipole placed at y = 0.1A and the center of the semicircle shown. The
plots are restricted to the region with surface impedance Z3. Reprinted (adapted) from Ref. [44]
under CC BY 4.0
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3.4 Coupling Effects

When two surface-impedance junctions supporting LWs are placed in proximity,
intriguing coupling effects may arise, analogous to coupled surface plasmon
polaritons [48]. Within this context, it is important to distinguish between in-plane
and out-of-plane scenarios.

In-plane LW coupling effects have been explored in the context of non-Hermitian
configurations with double planar, P7-symmetric junctions [47], as illustrated in
Fig. 13. Specifically, as schematized in the inset, the surface impedance profile is
given by:

Z1=—R+iXy, x < —dJ/2,
Z(x) =12Zy =—iXs, —d/2 <x <d/2, )
Z3=—ZT=R+iX1, x >d/2.

Each capacitive—inductive junction supports an LW, either damped or amplified, and
the coupling strength can be adjusted by varying the width d of the central lossless
region. As shown in Fig. 14a,b, the modal indices exhibit a spontaneous symmetry
breaking pattern typical of non-Hermitian systems [33]. This entails a transition
between a “symmetric” regime, characterized by real-valued branches, and a “bro-
ken” regime, marked by complex-conjugate solutions. These regions are separated
by an “exceptional point” (EP), at a critical distance dgp, where two eigenstates
coalesce, a phenomenon of significant interest for applications such as lasing and
sensing [49]. As illustrated in Fig. 14c,d, the critical EP distance dgp can be fine-
tuned by adjusting the surface resistance and reactances, offering opportunities for
dynamic modulation and the exploration of various paths in parameter space around
the EP, especially using gate-tunable platforms like graphene. Notably, the surface-
impedance parameters required for these configurations are achievable with models
of photoexcited graphene metasurfaces at THz frequencies [47].

Fig. 13 Schematic of

in-plane coupling in a reactance X
PT-symmetric configuration y R
(see inset). Reprinted with resistance R X

permission from Ref. [47].
Copyright ©2021 American
Physical Society
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Fig. 14 In-plane coupling of LWs. (a), (b) Real and imaginary part, respectively, of numerically
computed modal effective index l;z = k;/k, as a function of d /X, for X, =07, X, = 0.27,
R = 0.17; the symmetric and broken phases are highlighted with different color shades, and the
dashed line identifies the EP. ( c¢) Critical electrical separation between the metasurface interfaces to
obtain an EP (dg p/A) as a function of the normalized gain or loss parameter R, for X; = 0.7 and
X, = 0.2. (d) Same as panel (c) (with R = 0.1) but as a function of X (purple squares, bottom
axis) for X, = 0.2, and of X, (green diamonds, top axis) for X, =0.7. Reprinted (adapted) with
permission from Ref. [47]. Copyright ©2021 American Physical Society

In [50], the out-of-plane coupling of LWs was investigated within a general
parallel-plate waveguide configuration. Specific examples of this type of coupling
were also explored in [17, 22, 51].

The geometry of interest is illustrated in Fig. 15. We consider two planar meta-
surface junctions with surface impedances Z; and Zj, and Z3 and Z4, respectively,
arranged within a parallel-plate waveguide with spacing % in vacuum. Each junction
supports an LW propagating along the impedance discontinuity (z-direction) while
decaying both out-of-plane (along y) and in-plane (along x). Given the localized
nature of these waves, they interact weakly when the spacing # is large relative to
the wavelength. However, their interaction becomes significant when 7 < A.

Interestingly, the configuration in Fig. 15 can also be viewed as a junction
between two parallel-plate waveguides formed by pairs of metasurfaces (i.e., Z;
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Fig. 15 Schematic of
out-of-plane coupling of LWs
in a parallel-plate waveguide

configuration. Reprinted with Z
permission from Ref. [50].

Copyright ©2024 Materials

Research Society Z

and Z3, and Z3 and Z4). These structures have been recently studied in isolation for
both purely reactive and 7 -symmetric scenarios [52].

We first consider a purely reactive (capacitive-inductive) configuration that is
symmetric along the y-direction, with Zi = Z3 = iand Z, = Zs = —i0.1.
Figure 16a shows the numerically computed modal effective index k,/k as a
function of the electrical spacing #/A. As shown, there are two real-valued modal
branches, corresponding to modes with even and odd symmetry. For large values
of h, the coupling effects are negligible, and the modal indices asymptotically
approach k,/k = 1.89, which corresponds to the values for the isolated LWs in
each junction [10]. As & decreases, the interaction between the LWs intensifies,
causing the two modal branches to diverge. In the limit 7 — 0, one branch
approaches a constant value of k;/k =~ 3.06, corresponding to the modal index
of an LW supported by a single junction formed by the combined metasurfaces,
where the effective impedances are Z; || Z3 = Z1/2 and Z; || Z4 = Z/2. The
divergence of the upper modal branch represents an unphysical behavior, similar
to what was observed in Sect. 3.1, and arises from the idealized assumption of
discontinuous surface impedances. This artifact disappears when considering a
smooth (albeit sharp) impedance transition. Despite this, the modal index for closely
spaced junctions can still achieve significantly larger values compared to the isolated
junctions, leading to highly localized modes with potential applications in nonlinear
optics, subwavelength sensing, and near-field imaging.

Next, we examine a non-Hermitian configuration comprising two identical
capacitive, P7-symmetric impedance junctions, with parameters Z; = Z3 =
(=0.5 4 i0.5) (gain) and Zy = Z4 = (0.5 + i0.5) (loss), which are selected
to satisfy the bound-mode condition (see Sect.3.1) for the isolated junctions. A
notable aspect of this non-Hermitian setup is its potential to exhibit EPs [49],
similar to the in-plane coupling scenario discussed in Fig. 14. As illustrated in
Fig. 16b,c, EPs can be induced by introducing asymmetry, i.e., displacing one of the
junctions along the x-direction by an amount A while maintaining a fixed spacing
h. This perturbation results in modal indices with complex values, which exhibit a
spontaneous symmetry-breaking pattern, transitioning from a symmetric phase to a
broken phase through an EP. Also in this configuration, the properties of the EP can
be adjusted by varying the electrical thickness of the waveguide and by tuning the
surface impedances, allowing for dynamic control.
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Fig. 16 Out-of-plane coupling of LWs. (a) Numerically computed modal indices kz/k as a
function of electrical thickness 4 /A for a symmetric configuration (see inset) with Z; = Z3 = i
and Zy = Z4 = —i0.1; note the semi- log scale. (b), (¢) Numerically computed modal indices
(real and imaginary part, respectively) as a function of electrical displacement A /A for an 7~
symmetric configuration with Z; = Z3 = (—0.5+1i0.5), Zy = Z4 = (0.5+i0.5), and h = 0.31x.
Reprinted (adapted) with permission from Ref. [50]. Copyright ©2024 Materials Research Society

4 Conclusions and Perspectives

In summary, this overview has highlighted recent advancements and emerging
trends in the field of LW electromagnetics.

LWs represent a highly intriguing research domain with the potential to revolu-
tionize various applications, ranging from sensing and communications to quantum
computing. While LWs can be intuitively regarded as 1D analogs of SWs, their
theoretical and experimental study presents significant complexities, necessitating
the development of new analytical and numerical tools. Current analytical methods,
which often rely on complex special functions, do not facilitate a straightforward
physical interpretation of wave phenomena. Consequently, the material combina-
tions that can support LWs and the extent to which their operational frequency can
be advanced remain open questions.

Experimental studies to date are limited to microwave frequencies and under-
score the need for carefully engineered coupling mechanisms. Theoretical and
numerical investigations in the THz range offer preliminary insights, but extending
these findings to optical frequencies remains uncertain.

In conclusion, despite the significant interest and potential of LWs, the field is
still in its early stages, with many possibilities yet to be explored. This presents
substantial opportunities for speculative research and emphasizes the need for
experimental validation. Furthermore, translating these concepts to other areas
of wave physics, such as mechanics, where SWs are well understood but a 1D
counterpart remains elusive, could offer exciting new avenues for investigation.
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Oddly Shaped Inclusions: Depolarization )
Dyadics and Homogenization Qe

Tom G. Mackay and Akhlesh Lakhtakia

1 Introduction

This chapter concerns the theory of a homogenized composite medium (HCM)
comprising a host medium impregnated with randomly dispersed particulate inclu-
sions. Crucially, the inclusions must be sufficiently small relative to the wavelengths
involved so that the composite medium effectively behaves as a homogeneous
medium [1-4]. HCMs are of considerable technological importance, especially
with nanocomposite materials being increasingly developed for optical applications
[5]. Notably, by means of judicious design, HCMs may exhibit properties not
exhibited by their component mediums [6]. A straightforward example is furnished
by anisotropic HCMs, which can arise from isotropic component mediums provided
that the inclusions are shaped appropriately [7]. More generally, the notion of
homogenization is of fundamental importance in electromagnetics as it underpins
the transition from microscopic to macroscopic viewpoints [8, 9]

The constitutive parameters of HCMs are estimated using homogenization
formalisms. A wide variety of these formalisms have been developed over many
years [1, 4]. One of the most widely used formalisms is the Maxwell Garnett
formalism [10]. The popularity of this formalism may be attributed, in part at least,
to its computational simplicity and to its intimate connection with the Hashin—
Shtrikman bounds [11]. In common with most other homogenization formalisms,
this formalism adopts depolarization dyadics to represent the scattering responses
of the inclusions [4]. As described in detail in Sect. 2.1, the depolarization dyadic
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is the integrated singularity of the dyadic Green function for the host medium
[12, 13]. Until very recently, closed-form expressions for depolarization dyadics
were available only for a rather restrictive range of inclusion shapes [14-20], for
examples, spherical, spheroidal, ellipsoidal, cubic, and cylindrical. More complex
inclusion shapes could be accommodated only using numerical integration methods
[21, 22]. Consequently, homogenization formalisms generally have been investi-
gated for inclusions with simple shapes.

Within the past year, the range of inclusion shapes that can be readily catered
for in homogenization formalisms was broadened by the derivation of closed-
form expressions for depolarization dyadics for truncated spheres and truncated
spheroids, and this methodology was extended to truncated ellipsoids [23]. Also,
these depolarization dyadics were adopted in an implementation of the Maxwell
Garnett formalism to estimate the relative permittivity parameters of HCMs com-
prising truncated spheres and spheroids as inclusions [24]. This implementation was
extended to inclusions with truncated ellipsoidal shapes, with the corresponding
depolarization dyadics being evaluated numerically. In this chapter, an overview of
these recent developments to accommodate oddly shaped inclusions is provided.

In Sect. 2, a summary of the theoretical underpinnings of depolarization dyadics,
polarizability density dyadics, and the Maxwell Garnett homogenization formalism
is provided. No novelty is claimed for this background theory—it is presented for
completeness for the reader’s convenience. Then, in Sect. 3, recently derived closed-
form expressions for depolarization dyadics for truncated spheres and spheroids
are presented and illustrated; the extension of the methodology to truncated
ellipsoidal inclusions is also presented. In addition, the Maxwell Garnett formalism
is presented for HCMs based on inclusions shaped as truncated spheres, spheroids,
and ellipsoids. Finally, in Sect.3, numerical results are presented to illuminate
the relationship between the anisotropy of the HCM and inclusion shape. A brief
discussion is provided in the closing Sect. 4.

In the notation adopted, vectors are boldface; dyadics [4, 13] are double
underlined; &, and p, are the free-space permittivity and permeability, respectively;
and I = Uxlix + Gyly + 0,0, is the identity dyadic with {ix, @y, and @i, being the
unit vectors aligned with the coordinate axes of the Cartesian coordinate system
(x, y,z). Angular frequency is denoted by w, ky = w./&oi1o denotes the free-space
wavenumber, and an exp(—iwt) dependence on time ¢ is implicit.

2 Background Theory

2.1 Depolarization Dyadics and Polarizability Density Dyadics

Suppose that a closed surface S, encloses the electrically small region Vi, and
separates it from the unbounded region V4, as shown in Fig. 1. The unit outward
normal @,(r) is unambiguously identified at every point r € Si,; if present,
wedges and vertexes on Sj, can be rounded off slightly to hew to this restriction.
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Fig. 1 Schematic of a finite ~O Vi, €h=nﬁ
region Vi, separated from the u, Sin
external region V}, by the
surface Sip
n E5
Vin, €in

A homogeneous dielectric medium of relative permittivity &;,(w) fills Vi,, while a
homogeneous dielectric medium of relative permittivity ep(w) = nﬁ (w) fills Vy,.

The region Vj, is irradiated by a monochromatic electromagnetic field phasor
E(r, ). The source of this field source is confined to the bounded region Vg C Vy
far from Vj,. Accordingly, at any location r ¢ Vj the electric field phasor is given
exactly by Lakhtakia [25], Chew [26], and Sancer et al. [27] as

E(r, 0) = Ey(r, o) + k2 [ein(@) — £n(o)] / / / [Gu(r ¥ 01 B, 0] &,
Vin =

r¢ Vg, (1)
with
\YAY

Ghr,v;w)=|1
Gnlrxie) [=+k§eh(w)}

exp [ikonp(w)|r — r'[]

2

4 |r — 1|

being the dyadic Green function for the medium that fills V4. In particular, the
electric field phasor atr =r, € Vj, is given by Eq. (1) as

E(ro, @) = Eq(Fo, @)+ [gin(@)—en(@)] / / f |Guro, Vs 03B, )| d,
Vin =
ro € Vin, (3)
provided that r, ¢ Sip.
The integral on the right side of Eq. (3) needs to be treated carefully owing to the

term |r, — r'| 73 in its integrand [28]. Adding the term Gp(r,, r'; w)*E(r,, w) to the
integrand and subtracting the same term from the integrand yields [29, 30]

E(ro, w) = E5(ro, ) + k2 [£in(@) — en(w)]

: / ff |G (ro. ¥ 0 E(r'. @) — Go(ro. ¥ 0)Ero, )| dF

2 [ein(@)—en(@)] [ f / / Golro,t'; ) dﬂ “E(Fo, ), To € Vin,
Vin ™
4
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with

1
——VV —.
kyen(w)  4m|r —r'|

Gp(r, r';w) = 5)

By means of the identity VV (Jr — r/|7!) = =VV’ (Jr — r'|7!) together with the
Gauss theorem, the second integral on the right side of Eq. (4) simplifies, allowing
the electric field phasor to be recast as [25, 29]

E(ro, ©) = Eg(ro, ®) + k2
X [gin(®) — ep(w)] [M(ro, w) — 1( )L(ro)°E(ro, w)i| ,To € Vin, (6)

wherein the vector

Mo, 0) = [[[ [Gntro. s 0BG, 0) = Gotr 1 0B, )]
Vin = -
@

and the depolarization dyadic

L(r,) = f f i ®)
- in 0|
emerge [31, 32].

Next we focus on the volume integral M(r,, @) defined on the right side of
Eq. (7). The singularities of G (ro, r'; ) and Gp(re, ¥'; @) that arise in the limit
r' — r, balance each other in such a way that the integrand is integrable provided
that real constants a; > 0 and a, > 0 exist such that

i [E(r, w) — E(ro, ®)]] < a1]r — 1ro|® ©)

forallr € Vi, and j € {x, y, z} [29, 30]. This is the Holder continuity condition.

It is common practice [25, 29, 30] to make the approximation E(r/, w) =~
E(r,, ) for all I’ € Vi,, which is reasonable as long as Vi, is sufficiently small in
relation to the wavelengths in both Vi, and V4. This step has been computationally
justified [29] and follows the work of Maxwell [33]. Consequently, M(r,, @) can be
expressed as M (ry, w)*E(r,, ) and Eq. (6) reduces to

E(ro, ©) = Es(ro, ®) + k2 [£in(®) — en(®)]

I:M(ro’ w) — (ro)i| E(ro, ), 1€ Viy. (10)

en(@)=

The notion of M (r,, w) is attributable to Lorenz [34, 35].
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If Vi, is sufficiently small [25, 36], it also reasonable to assume that the volume
integral represented by M (ro, w) is negligible compared to L(ro)/ kgsh [25,31,37].
Hence, the electric field phasor is taken to be

gin(@) — en(w)

—1
A(ro):| *E;(ro,w), 15€ Vi (11)
ep(w) =

E(r,, ) >~ [é—i—

Electromagnetically, the small region Vi, may be represented by as an electric
dipole moment [25]

P(®) = Vin & [€in(@) — en(w)] E(ro, @) 12)

located at r,, with vj, being the volume of Vj,. This electric dipole moment
is regarded as the source of the field scattered into the external region V}. By
combining Egs. (11) and (12), the electric dipole moment may be expressed as

P(®) = vin a(w)*Es(ro, @) , 13)

wherein the polarizability density dyadic

gin(®) — ep(w)
en(w)

-1
a(w) = & [ein(@) — en(w)] [é + é(ro):| (14)

is introduced.

It should be emphasized that Eq. (14) delivers an approximation of the polar-
izability density dyadic, for the following reasons. Firstly, in deriving Eq.(11),
M (r,y, w) is taken to be negligible in relation to L(x,)/ kgah, but that is true strictu
sensu when Vi, is vanishingly small, regardles_s of the shape of Vij,. Secondly,
the Holder continuity condition applies best within the largest ellipsoid contained
in Vi, that is centered at r, [33]. If the shape of Vj, is not ellipsoidal, then the
electric field phasor within Vi, that is outside the largest inscribed ellipsoid is
only approximately accounted for. This means that r, needs to be judiciously
selected [23]. Notwithstanding this second source of approximation, Eq. (14) has
been widely implemented for non-ellipsoidal inclusion shapes such cubes [38, 39],
rectangular parallelopipeds [40], and circular cylinders of finite height [31].

2.2 Maxwell Garnett Formalism

In Sect. 2.1, a single inclusion embedded in a host medium was considered. Now
we turn to a composite medium consisting of a collection of inclusions randomly
distributed in a host medium. All inclusions have the same shape and orientation,
and all are electrically small. The composite medium fills all space Vyj. The volume
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fraction of the composite medium filled by the inclusions is denoted by fi,, while
Njj is the number density of inclusions. Thus, each inclusion’s volume is fi,/Niy.
As in Sect. 2.1, the inclusion medium has relative permittivity scalar &j, (w), and the
host medium &y, (w).

In compliance with the Maxwell curl postulates, the electric field phasor in Vyy
satisfies

V x [V x E(r, w)] — kggh(a))E(r, w) = iopJ(r,w), 1 €E Vy. (15)

If r lies inside an inclusion, then the electric current density phasor J(r, w) # 0,
otherwise J(r, w) = 0 [25, 41]. Suppose now that we assume the inclusions are
sufficiently small in relation to wavelength that the composite medium may be
regarded as being effectively homogeneous with relative permittivity dyadic £°(w).
The constitutive relation B

D(r, ©) = £oen(@)E(r, ®) + Pxs(r, ©) = £ () E(r, ») , (16)

characterizes the homogenized composite medium (HCM). Herein D(r, w) is the
electric displacement phasor and Py (r, @) is the excess polarization representing
the homogenized distribution of the inclusion medium inside the HCM.

In the Maxwell Garnett formalism, the equivalent source term J(r, w) in Eq. (15)
becomes in the homogenized regime

Javg(r, 0) = —iwPx(r, w), (I7)

which represents the spatial average of J(r, w) in an electrically small neighborhood
of r called the Lorentzian cavity [42]. Consequently, the electric field phasor in the
HCM is given by the integral equation

E(r, ©) = Eci(r, ) + o210 f f / Gr. v ) Pu(t, ), eV,
Van

(18)
where E¢f(r, w) is the corresponding complementary function, which need not be
explicitly specified.

Suppose that the region V; centered at r is the Lorentzian cavity. By convention,
V¢ is taken to be spherical. The local electric field phasor

Eloo(r, ©) = Ecr(r, o) + 0’110 f / / Gur. 1 ) Pos(F, ) F (19
Van—Ve —

is introduced to represent the electric field phasor present at r provided that the
excess polarization is null valued in V;. Equations (18) and (19) collectively deliver

E(l’, CO) = EIOC(rv 0)) + a)ZMO /// Qh(rs l'/; Q))'sz(r/, w) d3r/ . (20)
Ve
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In order to proceed, the standard practice is to assume that the excess polarization is
spatially uniform inside the Lorentzian cavity [42]. Consequently, Eq. (20) reduces
to

1
E(r, w) >~ Ejoc (r, w) — mpxs(r, ). (21)
0

A key step in the Maxwell Garnett formalism is to take Pxs = Nj,p and allow
Es(r, w) to play the part of Ejoc (r, w). Thus, Eq. (13) yields

Py (r, 0) = fina(@)*Eioc(r, @) . (22)

Now Ejoc(r, ) can be eliminated from Eq. (22) by means of Eq. (21), which leads
to

-1
Pys(r, w) = fina(w)* [! - ;fm c_z(w)] ‘E(r, o). (23)
= = 3gpen(w)” =

Finally, the Maxwell Garnett estimate

. -1
M%) = en(w) L+ Jin a(w)* [! - ;fin c_l(w)} (24)
= = & — =  3gen(w) -

0

of the relative permittivity dyadic £°/f (w) emerges, courtesy of Egs. (16) and (23).

A couple of comments on Eq. (24) are in order here. Firstly, a particular choice
of a(w) is not really essential for the Maxwell Garnett formalism. The Mossotti—
Clausius expression [35] for the polarizability scalar of an electrically small,
isotropic, dielectric sphere was adopted by Maxwell Garnett himself [10] and others
[43]; but even for that simple inclusion, other expressions may be implemented
[34, 35, 44, 45]. Secondly, generalizations of Eq. (24) for QM G have been developed
for inclusions of more than one type as well as for anisotropic (and bianisotropic)
inclusion and host mediums [4, 46].

3 Numerical Results

In this section, some recent developments pertaining to depolarization dyadics
for truncated spheres, spheroids, and ellipsoids, and the implementation of the
corresponding Maxwell Garnett homogenization formalism, are described and
illustrated with numerical calculations.
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3.1 Preliminaries

It follows from

trace[L(r )} = i// i, (1) (ﬁ> a2 25)
=0 A ) s, " I — 13

that

trace { é(ro)} =1, (26)

which is useful to verify numerical treatments for truncated ellipsoids.
An outstanding matter is the following: Where inside the inclusion region Vi,
should r, be taken for the integration that delivers the depolarization dyadic in
Eq. (8)? For a spherical inclusion region, L(r,) = (1/3)I for any r, € Vi, [32].
But for less symmetric inclusion shapes, L(1,) is sensitive to the choice of ry € Vig
[31, 43]. In order that the Holder contirﬁity condition (9) holds over the largest
portion of Vi, r, must be taken as the center of the largest sphere that can be
inscribed inside Vi,. With this understanding, henceforth we write L in lieu of L(r,).
In the following, all truncation planes are taken to be parallel to the xy plane,

without loss of generality. Consequently, L and ¢ acquire the diagonal forms
L = Lyuoyty, + Lyayhy + L, 0,1,

MG
X

i 27)
g =e¢

Uy 0y + 8§”G uy iy + eMG a0, [
When the inclusions are truncated spheres and truncated spheroids, Ly = Ly = L
and eMG = ¢MG = ¢MG Therefore, closed-form expressions for L. need not be
explicitly stated because L, = 1 — 2L for truncated spheres and spheroids, and
L, =1— Ly — Ly for truncated ellipsoids, courtesy of Eq. (26).

In order to illustrate the estimates generated by the Maxwell Garnett homoge-
nization formalism, the following representative values were chosen: e, = 24 0.5,
ein = 3.540.9i, and fi, = 0.3. Note that fi, = 0.3 is inconsistent with the Maxwell
Garnett formalism [1, 4].

3.2 Spherical Inclusion Geometry

The inclusion shape is based on truncations of the unit sphere, centered at the
coordinate origin.

3.2.1 Double-Truncated Sphere

The inclusion shape is the middle part of the sphere that is truncated below by the
plane z = —n and truncated above by the plane z = n, where 0 < n < 1. The
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Fig. 2 Schematic of a
double-truncated sphere

Fig. 3 Plot of L versus 0.35
n € (0, 1) for the 0.30
double-truncated spherical
. : 0.25
inclusion
0.20
~0.15
0.10
0.05
0.00

largest sphere that can be inscribed inside the double-truncated sphere has radius 7.
A schematic representation is provided in Fig. 2.
The integration in Eq. (8) yields

2
L = M ) (28)
6
The depolarization factor L, is plotted against » in Fig. 3. In keeping with standard
results for a spherical inclusion [32], L; — O in the limit  — 0, while L; — 1/3
in the limit n — 1.

The real and imaginary parts of the relative permittivity parameters ¢ and
eMG of the HCM are plotted against ; in Fig. 4. The HCM exhibits a monotonically
decreasing degree of anisotropy as 7 increases and becomes isotropic in the limit
n— 1.

3.2.2 Truncated Sphere

The inclusion shape is the upper part of the sphere that is truncated below by the
plane z = 1 — 27, where 0 < n < 1. The largest sphere that can be inscribed inside
the truncated sphere has radius 7. A schematic representation is provided in Fig. 5.
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Fig. 4 Plots of real and imaginary parts of ¢¥¢ and ¢¢ versus 5 € (0, 1) for double-truncated
spherical inclusion

Fig. 5 Schematic of a
truncated sphere

Fig. 6 Plot of L; and versus 0.35
n € (0, 1) for the truncated 0.30
spherical inclusion 0.25
020

~0.15

0.10

0.05

0.00
0.0 0.2 0.4 0.6 0.8 1.0

The integration in Eq. (8) yields

n 2
L= 6—3—-3n+ V4-=3
S aive T G GO NG

—n[11=3nG-ml}. 29)

This expression of L is plotted against 1 in Fig. 6. The plot in Fig. 6 is similar to
that in Fig. 3. In particular, as in Fig. 3, L; — 0 in the limit  — 0, while L; — 1/3
in the limit n — 1.
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Fig. 7 Plots of real and imaginary parts of ¢¥ and ¢ versus 5 € (0, 1) for truncated spherical
inclusion

The real and imaginary parts of the relative permittivity parameters etM G and
eMG of the HCM are plotted against 7 in Fig.7. The plots in Fig.7 are similar
to those in Fig.4. In particular, the degree of anisotropy exhibited by the HCM
decreases monotonically as 1 increases and in the limit  — 1 the HCM becomes

isotropic.

3.3 Spheroidal Inclusion Geometry

The inclusion shape is based on truncations of the spheroid

2 2
YAV e, (30)
o

centered at the coordinate origin with equatorial radius o > 0.

3.3.1 Double-Truncated Spheroid

The inclusion shape is the middle part of the spheroid that is truncated below by the
plane z = —n and truncated above by the plane z = n, where 0 < n < 1. The
largest sphere that can be inscribed inside the double-truncated spheroid has radius
o for n > o and radius n for n < «. A schematic representation is provided in
Fig.8.

The integration in Eq. (8) yields

[ a1 201 [ 21
—n m “+ o“ tan |:T] m]
L= .

2(e?— 1)

€2y
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Fig. 8 Schematic of a
double-truncated spheroid

withn > « (left)and n <
(right) 1

n>a

Fig. 9 Plot of L versus « € (0,4] and n € (0, 1) for the double-truncated spheroidal inclusion

Figure 9 presents a plot of L against o and n. For all values of 1, L; decreases
monotonically as « increases. On the other hand, for all values of «, L increases
monotonically as n increases. As n — 0, the limiting value L; = 0 is attained. As
n — 1, the limiting value

1 1 stan~! Va2 — 1
Lt = 5 1 o

_O[Z (0[2 _ 1)3/2

(32)
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b Re{e}'}

Fig. 10 Plots of real and imaginary parts of ¢ and ¢M© versus o € (0,4] and n € (0, 1) for
double-truncated spheroidal inclusions

is attained, which is a known result for spheroidal inclusions [15]. The limiting value
L = 1/2is attained as « — 0; and the limiting value L; = 0 is attained in the limit
a — o0,

The real and imaginary parts of the relative permittivity parameters etM G and
8?” G of the HCM are plotted against « and 7 in Fig. 10. As « increases, Re {stM G}
increases monotonically, and Re {eé” G} decreases monotonically, for all values of
n. As k increases, Re {¢!} decreases monotonically, and Re {¢}/“} increases
monotonically, for all values of «. The plots for Im {stM G} and Im {séu G} are
qualitatively similar to those for Re {stM G} and Re {eé"l G }, respectively. Apart from
at the very smallest values of «, the values of ¢ and ¥ are insensitive to « in
the limit n — 0.

3.3.2 Hemispheroid

The inclusion shape is the upper half of the spheroid, lying between the plane z = 0
and the plane z = 1. The largest sphere that can be inscribed inside the hemispheroid
has radius 5, with n = a+/1 —a? € (0,1/2) fora < 1/«/5 while n = 1/2 for
o > 1/+/2. A schematic representation is provided in Fig. 11.
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a>1N2
a<1/V2

Fig. 11 Schematic of a hemispheroid witha < 1/ V2 (left)and @ > 1/ V2 (right)

The integration in Eq. (8) yields

Ltz;{1+v+a2[a<a+ 2—0{2)—\)—3]
4yyt

2 _
— (@) V2 —a?log (-+r)a “)} (33)

a(v—y)
foro < 1/+/2 and

3 (1 V1T 4a2) + o2 (10 —_8J/1+ 4<x2) — 8o
L =
' 42 (3 + 8a2 — 16a%)

1—222+y

V14302 —4a% — 1
+4?/0§ o (34)

o’ log

+
for @ > 1/+/2, wherein

v=v2—3a2+a4} (35)

y =+/1—a?
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Fig. 12 Plot of L versus
a € (0, 5] for the
hemispheroidal inclusion

Im{e)/®}

MG
z

Fig. 13 Plots of real and imaginary parts of stM Gande
inclusions

versus o € (0, 5) for hemispheroidal

In Fig. 12, the depolarization factor L is plotted against «. The value of L
decreases monotonically as « increases. The limiting value L, = (2 ++/2) /8 is

attained as « — 0. The limiting value L; = 0 is attained as « — oo. The value
of L; coincides with that of L, at « = 0.5818. The results for the hemisphere are
recovered at @ = 1.

The real and imaginary parts of the relative permittivity parameters & G and
MG of the HCM are plotted against o in Fig. 13. The value of Re {¢}/¢} decreases
monotonically and the value of Re {¢ G} increases monotonically as « increases.
The graphs of Im{eM“} and Im{e¥“} are qualitatively similar to those of
Re {stMG} and Re {eé"lG} At a = 0.5818, stMG = aé"[G; i.e., the HCM is isotropic.
The more « increases or decreases from 0.5818, the greater is the degree of
anisotropy that the HCM exhibits. At @ = 1, the results for hemispherical inclusions

are recovered.

3.4 Ellipsoidal Inclusion Geometry

The inclusion shape is based on truncations of the ellipsoid

\S)

Qlk
)
=

y2
82

2

+ > +z° <1, (36)

centered at the coordinate origin with semi-axis lengths « > 0 and 8 > 0.
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3.4.1 Double-Truncated Ellipsoid

The inclusion shape is the middle part of the ellipsoid that is truncated below by the
plane z = —n and truncated above by the plane z = 1, where 0 < n < 1. Numerical
integration techniques are needed to evaluate L per Eq. (8).

Plots of Ly and Ly against & and 8 are displayed in Fig. 14 for n € {0.2, 0.4, 0.8}.
The depolarization factors Ly and Ly vary smoothly as o and 8 increase from 0 to
3; Lx is most sensitive to « at small values of o while Ly is most sensitive to 8 at
small values of 8. In general, the values of the depolarization factors Lx and Ly are
much less sensitive to variations in n than they are to variations in either « or 8.

|
o
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[
©
]
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o
o)

[
©
N
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|
o
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Fig. 14 Plots of Ly and Ly versus a € (0, 3] and 8 € (0, 3] for the double-truncated ellipsoidal

inclusion with n € {0.2, 0.4, 0.8}
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a Re{e/'°}

P |

Fig. 15 Plots of real and imaginary parts of 8,1("’ G, £§” G and sé"’ G versus o € (0,3]and B € (0, 3)
for double-truncated ellipsoidal inclusions with n = 0.4

The real and imaginary parts of the relative permittivity parameters 8)1:/[ G, sg” G,

and M G of the HCM are plotted against o and 8 in Fig. 15 for n = 0.4. Both
Re {¢MG} and Im {¢}/C} are especially sensitive to variations in o at low values

of «; both Re {eﬁ” G} and Im {S}I,W G} are especially sensitive to variations in 8

at low values of B; and both Re {¢/C} and Im {&}/¥} are especially sensitive to

variations in « and § at low values of @ and . Additional numerical studies (not

shown graphically here) revealed that 8)](” G, 8}1}4 G, and sé” G are generally relatively
insensitive to variations in n € (0, 1).
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b Ly

% 0.6

Fig. 16 Plots of Ly and Ly versus a € (0, 3] and 8 € (0, 3] for the hemi-ellipsoidal inclusion

3.4.2 Hemi-Ellipsoid

The inclusion shape is the upper half of the ellipsoid that lies between the plane
z = 0 and the plane z = 1. The radius of the largest sphere inscribed inside the
hemi-ellipsoid is given as

1/2, fora > 1/4/2, B>1/2
n=1qavl—oa2for a<1/v/2, a<pB. (37)
BJ1—pB2for B<1/V2, B<a

Numerical integration techniques are needed to evaluate L per Eq. (8).

Plots of Ly and Ly against  and B are displayed in Fig. 16. The depolarization
factors Ly and Ly vary smoothly as « and B increase from 0 to 3; specifically, Ly
decreases markedly as « increases, and Ly decreases markedly as 8 increases.

The real and imaginary parts of the relative permittivity parameters &/ G, 8;,” G,

and ¢MC of the HCM are plotted against  and 8 in Fig.17. As both o and g
vary, there are smooth variations in the real and imaginary parts of each of ¢,
8)1,” G, and eMY. Specifically, Re {SQ’I G} is particularly sensitive to variations in o
at small values of o, Re {8)1,” G

values of 8, and Re {sé"[ G} is particularly sensitive to variations in both & and 8

at small values of & and B. The plots for Im {¢¥S}, Im {8{,”6], and Im {¢}

} is particularly sensitive to variations in 8 at small

are qualitatively similar to those plots for Re {¢}}, Re {8;,” G }, and Re {MF},
respectively.
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Fig. 17 Plots of real and imaginary parts of e,’("’ G, sy G and eé"’ G versus o € (0,3]and B € (0, 3]
for hemi-ellipsoidal inclusions

4 Discussion

Depolarization dyadics are fundamental to theories of homogenization and scat-
tering from electrically small particles. Hitherto, closed-form expressions for
depolarization dyadics had been developed only for relatively simple inclusion
shapes such as ellipsoids and cubes, but now the range of inclusion shapes has been
broadened to include truncated spheres and truncated spheroids [23]. Furthermore,
the formalism has been extended to truncated ellipsoidal inclusions, but in this case,
numerical methods are needed to evaluate the depolarization dyadics.
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These newly developed depolarization dyadics for truncated spheres, spheroids,
and ellipsoids [23] have been incorporated [24] into the Maxwell Garnett formalism
to represent inclusions embedded in an isotropic dielectric host medium. The
applicability of this homogenization formalism has thus been substantially extended
to HCMs comprising inclusions of more realistic shapes.

Through numerical investigations based on physically realistic constitutive
parameter values, the anisotropy of the resulting HCM has been related to the
geometry of the inclusions. To be specific, the degree of anisotropy exhibited by the
HCM became greater as the shape of the inclusions deviated more from spherical.

Lastly, the Maxwell Garnett formalism has been well-established for many years
for HCMs arising from inclusions shaped as spheres, spheroids, and ellipsoids [1].
An important foundation for this formalism is the assumption that the inclusions
are sufficiently small that the electromagnetic field is spatially uniform within
each inclusion [42]. This assumption is also taken to hold for the oddly shaped
inclusions described herein. Physically, this assumption is reasonable provided that
the inclusions are sufficiently small and provided that their shapes do not deviate too
much from those of non-truncated spheres, spheroids, and ellipsoids. However, as
with all homogenization formalisms, only through comparison with experimentally
measured data can the usefulness of this recently developed implementation of the
Maxwell Garnett formalism be truly assessed.
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Applications
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1 Introduction

Light manipulation devices require materials that respond to an applied external
stimulus such as electric, magnetic, thermal, mechanical, or optical fields. The
speed, modulation range, depth, high light throughput, cost, and energy saving of
photonic devices are competing parameters that can lead to bottlenecks in numerous
critical applications, such as acquiring images at many wavelengths or polarization
states during the heartbeat cycle or from the eye retina before eye movement
or blinking, or for improving the yield of production in the nanoelectronics
industry, or again in experimental cosmology where fast surveying of galaxies is
required to search for extra-terrestrial life. One prominent emerging field combining
nanotechnology with photonics is the field of photonic metamaterials; however, fast
tunable devices exhibiting broadband, large modulation depth, high light throughput
at a low cost, ease of scaling, and compact manner are still lacking. Since these are
competing parameters, the existing solutions usually customize the device to a very
limited application.
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Photonic metamaterials (PMMs) offer many possibilities to resolve such prob-
lems [1, 2]. They are defined as artificial optical materials composed of subwave-
length metallic or dielectric building blocks with properties determined mainly
by their subwavelength nature rather than their chemical composition. These
building blocks or “photonic atoms” (PAs) are structural elements densely packed
into an effective material such that the operating wavelength is ideally much
larger (typically an order of magnitude or more) than the diameter of the PAs.
Highly unusual material properties become accessible, e.g., a negative refraction
index that has recently acquired operation wavelengths in the infrared and visible
ranges. Tunability of the properties of PMMs broadens their usability for fast
light modulation, such as tunable filters, tunable focus flat lenses, spatial light
modulators, and frequency reconfigurable antennae. Liquid crystals (LCs) possess
strong electro-optic effects and can penetrate nanogaps, thus they can be ideal for
tunable PMMs. Some preliminary works have demonstrated applications of PMMs
using LCs infiltrating the PMM or as a layer adjacent to the PMM. Others have used
thermotropic phase change materials, thermochromic materials, semiconductors,
electromechanical, magneto-optic, and electro-optic materials. However, until now
the majority of the demonstrated tunable PMM device concepts are limited either
in their size, switching speed, tunability range, and spectral bandwidth, and usually,
they require complex fabrication techniques, thus their practicality is limited.

Active control of the wavelength, polarization, or phase, of light—either tempo-
rally, spatially, or spatiotemporally—over a wide spectral range, wide field of view,
in an achromatic manner, that is fast, has a high light throughput and small form
factor, as well as low cost is always in demand for many important applications.
These range from spectral imaging to optical communications, from quantum and
optical computing to tunable lasers, from augmented reality devices to autonomous
cars, and many other emerging applications [3-5]. Progress is ongoing in light
manipulation methods and devices due to their utmost importance in many fields.
Nonetheless, the existing solutions, often suffer either from low speed, narrow
dynamic range, wide uncontrolled bandwidth, or low light throughput, and the
majority are bulky and expensive to manufacture. Narrow resonances of micro-
and nanostructures tuning can allow fast response and high sensitivity; however,
the dynamic range is usually small [6-8]. A device combining all these quality
parameters does not yet exist. Here, our main objective is to review recent advances
in photonic metamaterial (PMM) structures for light modulation, sensing, and
energy saving devices. The chapter is divided into three main sections, Sect. 2 is
on PMMs for light modulation, Sect. 3 is on PMMs for energy saving, while Sect.
4 is on PMMs for sensing applications.

2 PMDMs for Light Modulation

Photonic metamaterials (PMMs) show great potential for such light manipulation
devices [9-13]. When the PMM is a 2D surface, in what is called a metasurface,
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it can be prepared easily with well-established lithography fabrication processes as
compared to the 3D PMM. By making the PMM, or part of it, from responsive
material such as electrooptic, magneto-optic, thermoscopic, photosensitive, elas-
tomeric, acousto-optic, electromechanical, or nonlinear optical material (see Fig.
1), it is possible to tune the properties of the PMM as exemplified by many works
over the last decade [14—18]. In what follows, we present an overview of works
done on tunable photonic metamaterials with an emphasis on tunability with liquid
crystals.

2.1 Overview of Tunable PMMs

Electromechanical (EMC) EMC-driven metasurface operating in the Short-wave
infrared (SWIR) was demonstrated by Ou et al. [19]. It was fabricated by focused
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ion beam milling on a 50-nm-thick Si3N4 membrane. Under ~3 'V, the transmittance
becomes modulated, however, the depth was only 5%. Tunable plasmonic lattice
grating patterned on a flexible and stretchable PDMS substrate was shown by Chen
et.al [20]. It showed a response under external strain varying between 0% and 10%,
giving almost a 40% modulation depth in reflectivity by external strain change from
1.6% to 3.5%. The surface plasmon resonance shifted approximately 80 nm in the
visible at ~780 nm under the same strain variation. A focal-length tunable lens was
demonstrated by Arbabi et al. [21], using a pair of metalenses based on the high-
contrast dielectric arrays. One metalens is on a fixed glass substrate, whereas the
other on a movable Si3N4 membrane. The doublet shifted the focal length up to
80 wm. Foland et al. presented a 2D deformable GMR strain sensor by embedding
TiO, of 210 nm radius in PDMS [22]. The height of the pillars was 200 nm, and
they were arranged in arrays of 480 nm period in the x-axis, and 560 nm in the
y-axis. Two resonance peaks were obtained, one of wavelength around 775 nm for
the short-period axis and the second of around 850 nm for the long-period axis. The
resonant wavelength shifted along the long-period axis with a 4.8 nm/%se sensitivity
over a range of 5% strain.

Optical Nonlinearity Using the optical nonlinear Kerr effect of ITO, Zhu et.al
[23]. demonstrated tunable transparency plasmonic metasurface of gold on ITO. An
optical transparency window shift to the short-wavelength direction in the SWIR
range was observed. Optically tunable metasurface was demonstrated by Kim et.al
[24]. based on the structure Ag-Al,O3-Ag, called metal-insulator-metal (MIM)
nanocavity with a 70 nm-thick Ga: ZnO layer as an active layer. It showed fast
switching in the sub-picosecond range with 80% depth at laser pumping fluence
of 10 mJ/cm?. The cavity resonance red-shifted by 15 nm in the SWIR range
near the Epsilon-near-zero (ENZ) wavelength. At the ENZ condition, the field
becomes drastically enhanced, and this is used to enhance optical nonlinear effects.
A polarization switch was demonstrated using plasmonic metasurface and isomeric
ethyl-red polymer [25] based on a 100-nm-thick gold periodic array of L-shaped
slots on a 500-pwm-thick fused quartz substrate and ~ 300 nm ethyl-red polymer top
layer. By irradiating green laser (532 nm) the isomeric state of ethyl-red changed
from trans to cis state, which caused the refractive index to decrease. This induced
coupling between the resonant plasmonic modes and the isomeric state, and the
resulting polarization change revealed 80% modulation depth at 6 Hz. Visible light
fifth harmonic generation was observed [26] from the heterostructure of the Indium-
doped CdO layer on gold coated with MgO top layer due to the field enhancement
at the interface with MgO, although the ENZ condition occurs at the wavelength of
2250 nm.

Thermochromic Thermal tuning of metamaterials was done using thermochromic
phase change materials, such as germanium-antimony-tellurium (GST) or VO,. All-
optical bidirectional metasurface based on the GST was demonstrated [27] using
a 15 nm-thick GST layer sandwiched between SiO; and ZnS/SiO layers. Also,
the same group [28] demonstrated 10% reflectivity modulation depth in the UV
and visible using patterned GST heterostructure with ZnS/SiO,. Plasmonic 50-nm-
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thick Au trenches support plasmonic resonance and enhanced photo-absorption for
a temperature change of GST. As the phase of the GST layer changes from the
crystalline to the amorphous phase, the transmission at SWIR spectra rose from 20%
to 40%. Electrically controllable VO, metasurface was demonstrated [29] with the
VO, laterally sandwiched by structured gold electrodes and the voltage pulse train
changes the phase of VO, between amorphous and crystalline phases. A modulation
depth of 33% at the SWIR spectrum was observed with a response time < 10 msec.
Thermal tuning of VO,-TiO, multilayer metamaterial was demonstrated [30] due to
the dispersion relation change from the elliptic form to the hyperbolic form as the
temperature increases over the critical temperature of VO, around 325 K. Two types
of VO, metasurfaces were produced by us showing operation as smart windows
with improved performance, one by femtosecond pulsed laser [31] and the other by
oblique angle deposition technique [32].

Magnetic Tuning MTM properties with the magnetic field has been done in many
works, particularly in the GHz and sub-THz regimes, since in these ranges the
metamaterial structure may be considered as a combination of electrical compo-
nents, such as varactor diodes, capacitors, and inductors with a magnetic response,
for instance, the split ring resonator structure [33]. Shifts of SRR resonances were
reported [34-36]. Caratenuto et al. [37] demonstrated, theoretically and analytically,
the magnetic field-induced spectral radiative properties of a metamaterial composed
of Indium Antimonide (InSb) line-gratings on Tungsten (W) film in terahertz.
They showed that the InSb grating has single narrowband emissivity of unity in
terahertz, and by applying magnetic field, the light matter interactions are modified
by broadening the resonant wavelength by 25 wm while still maintaining the near-
unity resonance as shown in Fig. 2.

Tuning MTMs with Liquid Crystals Some materials change their refractive index
when an electric field is applied to them. Some are nonlinear materials following the

Fig. 2 InSb-W grating 1.0
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Kerr effect and others show linear variation with the applied electric field following
the Pockels effect. The origin of these effects is electronic and therefore they exhibit
a fast response; however, these effects are relatively weak, so a large interaction
region with the light is required from millimeters to centimeters and large voltages
are needed. Liquid crystals (LCs) are composed of anisotropic molecules, usually
rod-shaped, and therefore can rotate under the application of small voltage. It is
a strong effect showing birefringence modulation typically in the range 0.1-0.28;
however, larger values up to 0.4 were also demonstrated in response to 1-10 V
and only a few microns thick layer is required to generate 100% modulation. With
resonant structures, a very thin LC layer and small index modulation is required to
tune the resonance and obtain a large modulation depth. LCs possess a wide variety
of EO effects depending on their structure determined by the material, the molecular
alignment geometry of the device, and the anchoring strength of the molecules on
the surfaces. They can flow and fill nanogaps exhibiting strong thermo-optic and
magneto-optic responses, therefore they are ideal for tuning metamaterials. Hence,
by combining the two fields, a wide range of new devices with high potential can
be generated. Recent review articles [14, 15, 32, 38—42] on tunable MTMs, contain
up-to-date information on tuning using liquid crystals, ref. 37 is dedicated to this
topic. A short overview is presented below.

Of all the possible tuning methods of liquid crystals, electrical tuning is the most
convenient as it requires low voltages and negligible current. Among the first LC
tunable MTM devices was the one analyzed by Khoo et al. [43], consisting of
nanospheres immersed in the nematic liquid crystal. LiTaO3 was used as the core
material for this purpose, and their effective index properties were calculated using
the Maxwell Garnet mixing rule. By using this combination, it was shown that at
the frequency of 108 THz, the effective index of the material changes from +1 to
—1 as the effective permittivity varied from 2 to 4. Electromagnetically induced
transparency (EIT) and absorption resonant structure were demonstrated with the
LC layer to shift the resonance up to 0.5THz [44, 45] with modulation depths of
18.3 dB and 10.5 dB based on different combinations in split ring resonators in the
THz range. An all-dielectric metasurface composed of an array of nanodisks was
built [46] giving resonance in the SWIR range, and the LC layer on the top induced
a shift of about 70 nm and modulation depth of 75%. Another all-dielectric device is
the guided mode resonance (GMR) structure we demonstrated [8]. It is composed of
thin subwavelength grating on top of a waveguide layer and covered with 2000 nm
LC and showed voltage-induced tuning of the resonance by 40 nm and more than
80% modulation depth in the SWIR range. A thick subwavelength TiO; grating
exhibiting resonances in reflection, like the thin grating GMR, was also investigated
by us [47] as a refractive index sensor. In this case, the grating itself acts as
waveguide, thus providing the GMR peak; however, additional resonances were also
observed in the simulations such as the bound in the continuum (BIC) ultranarrow
resonance. Later, a tunable MTM based on 2-D metal-dielectric composite was
reported to operate in the NIR region [48]. Results showed that the metamaterial
exhibits a negative index band between 1.37 um and 1.47 pm when 1 ¢ is 2. As €1.¢
increases, the negative index band gradually decreases from shorter wavelengths
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Fig. 3 (a) The designed ideal metasurface combined with the LC layer, transparent electrodes and
alignment layers. (b) Experimental setup for device characterization. (¢) Measured transmission
spectra for the QWP, HWP, and FWP modes between crossed and parallel polarizers

to the longer wavelength side until it completely disappears for epc > 2.7. The
proposed near-IR MTM can reconfigure the index of refraction over a negative-
zero-positive range from A = 1.37 pm to A = 1.47 pm, which makes it a promising
candidate for applications requiring tunable devices. The study suggests that a
minimum practical value for the permittivity of an LC is e ¢ = 2, making this MTM
design highly practical. In their work, the negative index nature of the composite
structure is analyzed for near IR and extended to the mid-IR range for usability in an
extensive spectral range. An LC tunable metal-dielectric-metal cavity structure was
demonstrated [49] to create an electrically adjustable LC THz MTM polarization
converter. A new MTM composite of nanoporous microparticles (NMPs) in LC was
shown by us to act as a voltage tunable scattering device exemplified using p-Si
NMPs [50], organic cigar-shaped cochleate NMPs [51], and octa-decanol NMPs
[52] doped in small concentrations to the LC. The NMP itself acts as a tunable meta-
atom since the LC infiltrates the nanopores and modifies the effective refractive
index when an external field is applied. Very recently [53] our group demonstrated
a tunable achromatic waveplate based on nanograting made of Si combined with
8 wm thin LC layer operating in the SWIR range showing fast tunability between
quarter, half, and full waveplates, see Fig. 3.

The group of Chu [54] recently demonstrated a tunable filter based on a 2D array
of a-Si nanodisks covering the C-band telecommunication window using the organic
photoalignment layer AZB. They showed that photoalignment gives better contrast,
but compared to flat surface devices it is still lower by a factor of 4-5. The resonance
dip however has a FWHM of more than 30 nm, indicating that it is far from useful
in practical applications.
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Since LCs have a large thermo-optic effect, the same tunable MTM structures
can also be tuned thermally. A thermo-optic LC-MTM was reported by Liu et al.
[55] using an electrical split ring resonator structure. In this work, the E7 LC was
infiltrated between the MTM and an additional 1-mm-thick quartz cover slip. The
maximum shift induced is —12.3 GHz. After infiltration of the metamaterial with
LC, the resonant dip shifted to 1.161 THz for the LC-orientation parallel to the
split opening and 1.154 THz when the LC is perpendicular to the split opening.
The guided mode resonant MTM structure was demonstrated in reference [8] as
a potential thermo-optic sensor and filter near the phase transition from nematic to
isotropic where the thermo-optic effect is enhanced. Our NMP-LC MTM composite
[48-50] was also shown to be tuned by temperature.

LCs also have magnetic anisotropy, and the molecules can rotate in response
to a magnetic field. A negative index device was proposed based on SRRs and rods
arranged in a periodic manner by Pendry [56]. By utilizing a similar design of MTM,
Zhang et al. [57] developed a magnetically tunable LC MTM device operating
in the GHz range. Resonance shift was analyzed showing that the effective index
change in the composite structure is linearly dependent on the LC index change.
Using a photoelastic LC elastomer with a plasmonic metasurface on top, Liu et al.
demonstrated tuning of the plasmonic dip by more than 200 nm in the SWIR range
optically [58].

One of the attractive MTM devices is flat lenses, which can be engineered with
a radial refractive index profile achieved by varying the density of the unit cells
(photonic atoms) of the MTM. The index profile can be continuous as with glass
lenses or discrete as with diffractive lenses. By infiltrating LC in between and
within the unit cells, it is then possible to vary the focal length. One potential
application of varifocal flat lenses is in the field of virtual and augmented reality.
By incorporating these lenses into head-mounted displays, it could be possible to
provide a more rea