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Introduction 

This book is based on talks delivered at the 2nd Weiglhofer Symposium on 

Electromagnetic Theory. The symposium was dedicated to the memory of Werner 

Siegfried Weiglhofer, formerly Professor of Applied Mathematics at the University 

of Glasgow, who died in January 2003 in a mountaineering accident in Norway 

(Fig. 1). 

The 1st Weiglhofer Symposium on Electromagnetic Theory was held in July 

2022 in Edinburgh, Scotland. A book comprising talks delivered at that symposium 

was published the following year [1]. 

The 2nd Weiglhofer Symposium, held in Cetara, Italy, was coordinated by the 

two of us. Francesco is Professor of Optics, Department of Industrial Engineering, 

University of Salerno, and Vincenzo is Professor of Electromagnetics, Department 

of Engineering, University of Basilicata. Although not having worked directly 

with Prof. Weiglhofer, both of us have deeply appreciated and capitalized on his 

pioneering work on theoretical electromagnetics of complex materials. 

Twenty-two papers on cutting-edge topics of electromagnetic theory and appli-

cations were presented at the 2nd Weiglhofer Symposium by researchers from 13 

different countries (Fig. 2). 

This book consists of 16 chapters showcasing significant recent progress in 

theoretical electromagnetics ranging from engineering science to nanotechnology. 

The topics covered are diverse, ranging from foundational concepts to practical 

applications, and include both analytical and numerical approaches. 

The book also includes a chapter that is an English translation from German of a 

seminal paper published by Eduard Reusch in 1869. The last chapter in the book is 

a report on a round-table discussion held in the closing session of the symposium, 

on the critical role of Electromagnetism—particularly in the fields of Optics and 

Photonics—addressing some of today’s most pressing societal challenges, including 

Energy, Climate, and Health.
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Weiglhofer (25 Aug 1982–12 
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Fig. 2 Speakers at the 2nd Weiglhofer Symposium on Electromagnetic Theory, photographed by 

the co-organizer Roberta De Simone at the Hotel Cetus, Cetara (SA), Italy 
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Optical Investigations on Periodic 

Multilayers of Mica 

Eduard Reusch and Akhlesh Lakhtakia 

Annalen der Physik und Chemie (Leipzig) 138, 628–638 (1869) 
Untersuchung über Glimmercombinationen; von E. Reusch. 

(Aus d. Monatasberichten d. Akad. Juli 1869.) 

1. Wenn man eine gerade Anzahl dünner Plättchen zweiaxigen Glimmers in der Art 
über einander legt, dafs die Hauptschnitte (Supplementarlinien) der Plättchen 
sich unter 90 ◦ . abwechselnd kreuzen, so erhält man schon bei einer mäfsigen 
Zahl von Kreuzungen ein Präparat, das sich nahe wie ein einaxiger Krystall ver-
hält. Fallen die Glimmerhauptschnitte mit den gekreuzten Polarisationsebenen 
zusammen, so ist die Imitation vollständig; dreht man aber das Präparat in seiner 
Ebene, so bleiben zwar die Farbenringe, aber die Arme des schwarzen Kreuzes 
hellen sich auf und nach einer Drehung um 45 ◦ . bleibt nor im innersten Ring ein 
kurzarmiges Kreuz übrig. Nörremberg, von dem dieser Versuch stammt, wurde 
dazu durch die bekannten Arbeiten Senarmont’s über Glimmer und Seignettesalz 
veranlafst. Quenstedt’s Mineralogie (2. Auflage, S. 239) ist meines Wissens die 
einzige Schrift, in der dieser Versuch erwähnt wird. Uebrigens liefert Hr. Steeg in 
Homburg (No. 77 seines Katalogs von 1867) diese Präparate in ausgezeichneter 
Schönheit. 

2. In letzter Zeit habe ich neue Glimmercombinationen versucht, durch welche die 
Wirkung rechts oder links drehender einaxiger Krystalle nachgeahmt werden 
sollte. Mit Hülfe der untenstehenden Figuren will ich vorerst eine Vorstellung 
von diesen Combinationen geben. 

E. Reusch 
Eberhard Karls Universität Tübingen, Baden-Württemberg, Germany 

A. Lakhtakia (✉) 
The Pennsylvania State University, University Park, PA, USA 
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Fig. 1 

Fig. 2 

Auf zwei Glasplatten wurden Cartons geklebt, welche vorher je drei unter 
60 ◦ . sich schneidende rechtwinklige Ausschnitte zum Einlegen der länglichen 
Glimmerlamellen erhalten hatten. Die Lamellen selber stammten von einem 
zweiaxigen Glimmer von über 70 ◦ . Axenwinkel; sie waren möglichst dünn und 
gleich dick, und in allen fiel die Supplementarlinie (der Hauptschnitt) mit der 
längeren Dimension zusammen. Angenommen man habe 48 Lamellen; die eine 
Hälfte wird nun verwendet um nach Fig. 1 die Lamellen in der Ordnung 1, 2, 
3 zu einer von links nach rechts ansteigenden Treppe zu schichten; die andere 
Hälfte wird nach Fig. 2 zu einer von rechts nach links aufsteigenden Treppe 
geschichtet. Vor dem Auflegen einer neuen Lamelle wird auf die liegende ein 
Tropfen von dickflüssigem Kopalfirnifs gegeben und die neu aufgelegte Lamelle 
leicht angedrückt. Man erhält so zwei Präparate, deren Lamellen in dem mit 
R bezeichneten Stück (Fig. 1), für einen Beobachter, der die Treppe von der 
Seite ansieht, nach Rechts, in L (Fig. 2) nach Links ansteigen. Der Botaniker, 
welcher zur Bestimmung der Windungsrichtung einer Schraube sich in deren 
Axe stellt, wird allerdings und vielleicht mit gröfserer Consequenz das Stück 
R ein linksgewundenes, und das Stück L ein rechtsgewundenes nennen; im 
Folgenden werde ich aber an dem in der Technik und im gewöhnlichen Leben 
gebräucblichen Begriff der rechten und linken Schraube festhalten. 

Die Präparate R und L verhalten sich nun in der centralen regulär sechseck-
igen Ueberdeckung sehr nahe wie ein rechts oder linksdrehender Bergkrystall. 
Schon bei vier bis sechs Umgängen aus nicht übermäfsig dünnem Glimmer
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läfst sich beim Drehen des oberen Nicols die Drehrichtung bestimmen; im 
Nörremberg’schen Instrument mit grofsem Sehfeld sieht man das Ringsystem 
mit dem bläulichen Mittelkreuz und beim Ueberdecken beider Präparate sehr 
befriedigende Andeufungen der Airy’schen Spiralen. 

Ganz dieselben Wirkungen erhält man mit zwei Präparaten, in welchen vier 
Lamellensysteme unter 45 ◦ . zu einer rechten und linken Treppe geschichtet sind. 

Die von mir zuerst hergestellten Präparate bestanden theils aus nicht sehr 
dünnen und nicht vollkommen gleich dicken Lamellen, theils war die Zahl 
der Umgänge eine kleine (3 bis 6); ich wandte mich daher an Hrn. Steeg und 
erhielt von demselben nach kurzer Zeit zwei Paare 60grädiger Präparate von 
überraschender Gröfse und aufserordentlicher Schönheit, welche namentlich den 
Farbenwechsel bei Drehung des oberen Nicols in brillanter Weise zeigen. Das 
eine Paar besteht aus je 30 Lamellen von 1/8 λ., das andere gar aus je 36 Lamellen 
von noch geringerer Dicke. Das erste Paar giebt für rothes Licht eine Drehung 
von 150 ◦ ., was einer Quarzdicke von etwa 8 mm

. entspricht. 
Zurn Beweis für die grofse Sicherheit und Kunstfertigkeit, mit welcher Hr. 

Steeg den Glimmer zu behandeln weifs, führe ich an, dafs die 72 Lamellen des 
zweiten Paares, 12 mm

. breit und 30 mm
. lang, aus derselben Tafel herausgeshnitten 

worden sind. Aus einer dünnen Tafel (1/8 λ.), die ich der besonderen Güte des 
Hrn. Steeg verdanke, habe ich später Präparate mit vier Lamellensystemen unter 
45 ◦ . hergestellt, welche die Airy’schen Spiralen gaben, während meine ersten 
Präparate zwar den Farbenwechsel beim Drehen des Nicols, beim Ueberdecken 
aber ein confuses Bild der Ringe zeigten. 

Wenn im convergirenden Licht bei gekreuzten Polarisationsebenen eine 
solche Glimmer combination in ihrer Ebene gedreht wird, so bleiben wohl 
die Ringe, aber die Arme des schwarzen Kreuzes erfahren Aenderungen; 
namentlich sieht man, wie an den Enden der in die Polarisalionsebenen fallenden 
Durchmesser des innersten Rings abwechselnd schwarze Flecken ein- und 
austreten. Ebenso erfährt bei parallelem Licht die Färbung kleine Wechsel beim 
Drehen des Nicols, jedoch mehr in der Intensität, als im Farbton. 

Ich habe gefunden, dafs man einem Quarze diese Eigenschaften einer Glim-
mercombination dadurch ertheilen kann, dafs man über und unter demselben je 
eine Achtelundulationsglimmerplatte mit rechtwinklich gekreuzten Hanptschnit-
ten einschaltet. Die Glimmercombinationen sind daher aufzufassen als elliptisch 
rechts und links polarisirende Medien, welche sich dem Quarz wohl um so mehr 
nähern, je dünner die Lamellen und je gröfser die Zahl der Umgänge. 

Ebenso lassen sich die unter (1) besprochenen Modificationen des schwarzen 
Kreuzes der Nörremberg’schen Combination dadurch an einer zur Axe senkrecht 
geschnittenen Kalkspathplatte hervorbringen, dafs man dieselbe in der angegebe-
nen Weise mit den Achtelundulationsplatten verbindet und das Ganze in seiner 
Ebene dreht; man hat daher in der Glimmercombination die Erscheinung, wie 
wenn ein einaxiger nicht drehender Krystall elliptisch polarisirt und analysirt 
würde. 

3. Beim Schichten der Lamellen unter 60 ◦ . ergeben sich gleichseitige Dreiecke auf 
den Seiten des centralen Sechsecks, in welchen nur zwei Lamellensysteme sich
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Fig. 3 

Fig. 4 

abwechselnd unter 60 ◦ . kreuzen. Man überzeugt sich leicht, dafs es sich bei 
diesen Dreiecken, je nach ihrer Lage, um elliptische Rechts- oder Linksdrehung 
handelt. Diefs hat mich veranlafst, zunächst die Combination zweier Platten 
von beliebiger Dicke, deren Hauptschnitte einen von 90 ◦ . verschiedenen Winkel 
bilden, zu untersuchen. Eine solche Combination giebt im Allgemeinen rechts 
oder links elliptisch polarisirtes Licht, d. h. es gelingt beim Drehen des oberen 
Nicols eine Drehrichtung zu bestimmen, aber beim Drehen der Combination in 
ihrer Ebene ändert sich die lntensität und wohl auch die Nüance der Farbe. Der 
Versuch gelingt sowohl mit zwei beliebigen Glimmer als Gypsplatten, oder bei 
Combinirung von Glimmer mit Gyps, wenn nur deren Farben keiner zu hohen 
Ordnung angehören. 

Im Folgenden beschäftige ich mich blos mit Glimmertarfeln von gleicher 
Dicke. Zwei solche Tafeln, in welchen wie früher die längere Dimension dem 
Hauptschnitt entspreche, können nun entweder zu einer rechten Stufe A (Fig. 3) 
oder zu einer linken Stufe B (Fig. 4) zusammengelegt werden. Zwei solche Stufen 
haben jedenfalls entgegengesetzte optische Drehung, aber der Sinn der Drehung 
ist durch die Dicke der Platten mit bestimmt. Zeigen z. B. die Platten ein 
Grün zweiter Ordnung, so giebt die rechte Stufe A auch Rechtsdrehung; bei 
Platten, welche ein Gelb erster Ordnung zeigen, ist es umgekehrt. Der Winkel 
der Hauptschnitte ist ohne Einflufs auf die Drehrichtung, nur mufs er von 0 ◦ . 
und 90 ◦ . gehörig abweichen. Legt man zwei z. B. 60grädige Stufen A und B
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mit parallelen Hauptschnitten über einander, so bleibt immer eine Drehung im 
Sinne der oben liegenden Stufe. Kreuzt man die Stufen rechtwinklich, so findet 
in der mittleren Ueberdeckung keinerlei Wirkung stall, was auch das Azimut der 
Stufenverbindung seyn mag: die zwei Arme des Sternkreuzes, welches aus der 
Ueberdeckung der Platten verschiedener Stufen entsteht, haben entgegengesetzte 
Drehung. 

Von gröfserem Interesse ist aber der Fall, dafs viele gleiche Stufen aus sehr 
dünnen Glimmerlamellen zu einer rechten oder linken Stufensäule geschichtet 
sind: in diesem Fall dreht die rechte Stufensaule rechts, die linke links. Hiermit 
begreift man sofort z. B. bei der 60grädigen Combination Fig. 1 die Wirkungen 
der Dreiecke a, b, c; die zwei ersten gehören zu einer rechten Stufensäule, 
das letztere zu einer linken. Die Dreiecke a'

., b'
., c'

. wirken natürlich wie die 
gegenüberliegenden gleicharmigen. Mit derselben Regel bestimmen sich die 
Drehrichtungen in den äufseren Sternspitzen bei der 45grädigen Combination 
von vier Lamellensystemen. 

Solche Stufenlsäulen zeigen noch cine andere Eigenthümlichkeit: im conver-
girenden Lichte sieht man durch die Ueberdeckung ein zweiaxiges Ringsystem, 
dessen Supplementarlinie den spitzigen Winkel der Hauptschnitte der Glimmer-
lamellen halbirt und dessen Axenwinkel kleiner ist als der des angewandten 
Glimmers. Die schwarzen Hyperbeln erscheinen jedoch nur, wenn die Supple-
mentarlinie des Combinationsglimmers mit den Polarisationsebenen 45 ◦ . macht: 
fällt sie mit der einen oder andern zusammen, so enthalten die innersten Ringe 
nur schwarze Tupfen. 

Die Wirkung einer Stufensäule läfst sich mit ziemlicher Annäherung an 
einer dicken Glimmerplatte dadurch nachahmen, dafs man sie zwischen zwei 
Achtelundulationsplatten mit rechtwinklig gekreuzten Hauptschnitten in der 
Art einschaltet, dafs der Hauptschnitt der Glimmerplatte 45 ◦ . mit jenen macht; 
und zwar hat diese Combination im parallelen Licht verschiedene Drehrich-
tung, je nachdem der Hauptschnitt der Platte das eine oder audere Paar der 
Scheitelquadranten halbirt, welche durch die Hauptschnitte der Achtelundula-
tionsplatten gebildet werden. Es erinnert diefs au eine von J. Müller (Lehrb. 
d. Physik, 7. Aufl., I, S. 906) beschriebene Anordnung, bei welcher durch eine 
analoge Verbinduing einer Gypsplatte mit zwei Viertelundulationsglimmerplat-
ten, wenigstens im parallelen Licht die Wirkung des Quarzes nachgeahmt wird. 

4. Die optischen Wirkungen der bisher besprochenen Glimmercombination lassen 
eine mathematische Behandlung zu, welche für die Erscheinungen in parallelem 
Licht voraussichtlich mit viel geringerer Schwierigkeit, als für die im conver-
girenden Licht verbunden seyn wird. Vielleicht findet sich ein tüchtiger Rechner 
veranlafst, diese wohl nicht ganz undankbare Aufgage anzufassen. 

Ob diese Combinationen dazu angethan sind, uns Aufschlufs oder wenigstens 
Andeutungen über den Verband der mit Circularpolarisation begabten Moleküle 
zu geben, das wird die Zukunft lehren. Vor der Hand weifs ich in dieser 
Beziehung nur eine schwache Analogie und einige Vermuthungen beizubringen, 
die ich der Nachsicht der Fachmänner empfehlen möchte.
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In einer früheren Mittheilung über die sogenannte Lamellarpolarisation des 
Alauns1 ) habe ich nachzuweisen versucht, dafs es sich hier um eine schwache 
Doppelbrechung in Folge innerer Spannungen handle, die man sich in den 
Octaëderflächen in der Art wirksam zru denken habe, dafs die optische Elasticität 
in diesen Flächen nach allen Richtungen gleich, aber kleiner als senkrecht sey. 
Ferner habe ich gezeigt, wie die Wirkung eines optisch activen Alaunoctaëders 
oder eines Präparats daraus nach zwei parallelen Würfelflächen, in den vier dis-
tincten Quadranten durch vier dünne Glimmerplättchen vollständig nachgeahmt 
werden kann. Bei diesem Glimmerpräparate kommen aber keine Ueberdeckrin-
gen vor, während der Nerv der neuen Präparate eben in den Ueberdeckungen 
liegt. Es entsteht daher umgekehrt die Frage nach derjenigen Krystallstructur, 
welche einer Glimmercombination mit Ueberdeckungen entspricht. 

Ein nahe liegender, Gedanke ist nun wohl folgender: im idealen activen 
Alaunoctaëder reichen die irgend einer Octaëderfläche parallelen Spannungsebe-
nen nur bis an die drei rechtwinklichen Axenebenen heran; es ist aber auch 
denkbar, dafs in einem Krystall die durch innere Spannungen und Contrac-
tionen herbeigeführle Störung der ursprünglichen Structur, sich auf eine oder 
mehrere von einander verschiedene, gegen die Richtung des durchgehenden 
Lichtes geneigte Spannungsebenen werde zurückführen lassen, welche den 
ganzen Krystall je in constanter Richtung durchsetzen. Nun wissen wir zwar 
sehr Weniges über die normale Krystallstructur und folglich noch viel weniger 
über die factisch vorhandenen Störungen derselben: will man daher die Sache 
überhaupt anfassen, so sieht man sich vor der Hand auf einige instinctmäfsige 
Vermuthungen beschränkt. 

Im regularen System ist der Fall einzelner nicht durchgehender Span-
nungsebenen in dem Octaëder des activen Alaunoctaëders verwirklicht. 
Die optischen Erscheinungen müssen verwichelter werden, wenn andere 
Flächen, z. B. die des Leucitoëders als einzelne Spannungsflächen auftrefen 
(Leucit. Analcim?). Die von Marbach entdeckte Circularpolarisation des 
chlorsauren Natrons ist möglicherweise das Resultat von Spannungen nach den 
Dodekaëderflächen, verbunden mit secundáren Spannungen nach den Flächen 
des rechten oder linken Tetraëders; die 45grädige Glimmercombination von vier 
Lamellensystemen giebt vielleicht, bei aufserordentlich schwacher Wirkung der 
einzelnen Umgänge, ein Bild hieran. 

Dieselbe Glimmercombination entspricht vielleicht auch dem Falle der Cir-
cularpolarisation im quadratiscben System. Von den vier Lamellensystemen 
würden 1 und 3 die Structur des einaxigen nicht drehenden Krystalls einiger-
maafsen versiunlichen; die Lamellensysteme 2 und 4 wären das Aequivalent 
von durchgehenden Spannungen nach den Flächen des rechten oder linken 
Hemioctaëdera. — Das Auftreten einer einzelnen gegen die Axe geneigten Span-
nungsebene, oder die ungleiche Intensität der einzelnen Spannungen müfste sich

1 Ann. Bd. 132 (1867) S. 618. 
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durch zweiaxigen Habitus der optischen Erscheinungen kund thun (Dislocation 
des schwarzen Kreuzes im Beryll, gelben Blutlaugensalz usw.). 

Die Circularpolarisation im rhomboëdrischen System ist wohl das Resultat 
von drei gegen die Axe gleich geneigten durchgehenden Spannungsebenen, 
welche vielleicht den Flächen des einen oder andern der zwei zusammengehöri-
gen Halbskalenoëder folgen. Der Gedanke an die Möglichkeit solcher innerer 
Spannungen liegt wohl bei keiner Substanz so nahe, wie bei der Kieselerde. Sind 
die drei Spannungen vollkommen gleichwerthig, so hätte man die normale rechts 
oder links drehende Wirkung des Quarzes; fallen alle drei Spannungen fort, 
oder gleichen sich dieselben gegenseitig aus, so bliebe, wie man diefs an vielen 
Amethysten stellenweise beobachtet, die rein einaxige Wirkung ohne Rotation. 
Noch bleibt aber die Möglichkeit, dafs nach Umständen jene drei Spannungen 
von ungleicher Intensität sind, oder sich auf zwei reduciren, und dann hätte 
man die an manchen Quarzen so prägnant auftretende zweiaxige elliptische 
rechts oder links drehende Polarisation, wie man sie an den oben besprochenen 
Stufensäulen, oder an Präparaten beobachtet, an welchen absichtlich eins der drei 
Lamellensysteme aus etwas dickerem oder dünnerem Glimmer besteht. 

In Betreff der mannigfaltigen Erscheinungen am Quarz und Amethyst erlaube 
ich mir auf die reichhaltigen und wohlgeordneten Beobachtungen von Dove in 
seiner Farbenlehre (S. 247–260) zu verweisen. 

Zum Schlufs bemerke ich noch, dafs die Kenntnifs der Wirkungen der 
Glimmercombinationen auch von einigem Werth seyn dürfte für das Verständnifs 
gewisser Erscheinungen am Glimmer selber. Die Wandlungen des Ringsystems 
bei Zwillingen, so wie die oft sehr erheblichen Aenderungen im Winkel der 
optischen Axen an demselben Stücke begreifen sich einigermaafsen, wenn man 
regelmäfsige Verwachsungen und Durchdringungen verschiedener Individuen 
annimmt. Die Kenntnifs dieser Erscheinungen verdanke ich zum gröfsten Theil 
den Mittheilungen und vielfachen gütigen Glimmersendungen von G. Rose, 
und diese waren es auch, welche für mich ursprünglich die Veranlassung zur 
Herstellung der neuen Glimmercombinationen geworden sind. 

Tübingen, den 29. Juni 1869. 
Zusatz. 

Aus zuverlässiger Quelle habe ich erfahren, dafs von einigen Physikern 
behauptet worden ist, der Nachweis der Drehung bei geschichteten Glimmer-
lamellen rühre von Nörremberg her. Ich erlaube mir nun zu erklären, dafs 
unter den Präparaten Nörremberg’s, welche zu gleichen Theilen in die hiesige 
Sammlung und in die der polyt. Schule zu Stuttgart übergegangen sind, nur 
rechtwinkliche Combinationen vorkommen. Die durch 60grädige Combinatio-
nen bewirkte Rechts- und Linksdrehung habe ich in der Pfingstwoche dieses 
Jahres durch selbständige Versuche gefunden und sobald ich des Resultats 
ganz sicher war, Hrn. Steeg in Homburg um Herstellung derartiger Präparate 
gebeten; ein Wunsch, dem derselbe in der oben angegebenen ausgezeichneten 
Weise nachgekommen ist. — Zur Bekräftigung dieser meiner Behauptungen
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mögen zwei Documente dienen, die Hr. Prof. Poggendorff etwaigen Zweiflern 
vorzuweisen die Güte haben wird. 

Tübingen, 24. Oct. 1869. 
E. Reusch. 

Zusatz des Herausgebers. 
Die beiden Documente, von denen hier die Rede ist sind: ein Attest des Hrn. 

Prof. Zech und ein Brief des Optikers Hrn. W. Steeg. 
In dem ersteren heifst es schliefslich: 
— Der Unterzeichnete ist sonach und dann noch insbesondere wegen seines 

häufigen Verkehrs mit Nörremberg von 1854 bis 1862 berechfigt und befähigt, 
auszusprechen, dafs Nörremberg nie andere Glimmercombinationen gemacht 
hat, als rechtwinklige. Im hiesigen physikalischen Kabinet befindet sich kein 
einziges Präparat von Nörremberg, bei welchem zwei Glimmerblätichen unter 
einem andern Winkel, als eincm rechten, gekreuzt wären, insbesondere keines, 
das eine Drehung der Polarisationsebene zeigt. 

Stuttgart, 20. Oct. 1869. 
Prof. Dr. Zech. 

Und der Brief des letzteren sagt: 
— Hierzu erlaube ich mir zu bemerken, dafs ich bestimmt weifs, dafs 

Nörremberg derartige circular polarisirende Präparate nie dargestellt hat. Ich 
habe mit demselben viel verkehrt und seine ganze Sammlung gesehen. 

Seine derartigen Glimmerpräparate waren nur in rechten Winkeln gekreuzt, 
um Sénarmont’s Hypothese als richtig zu beweisen, dafs man aus dünnen 
Lamellen von zweiaxigem Glimmer einen einaxigen Körper etwa wie Kalkspath 
herstellen kann. 

Die geniale Idee des Kreuzens der Glimmer-Lamellen in Winkeln von 60 ◦ ., 
also im hexagonalen Sinne, ging aber zuerst und ganz allein von Prof. Reusch 
aus, wie aus dessen Briefe an mich vom 16. Mai ersichtlich ist. 

Die Sache hat mich so interessirt, weil ich früher schon ähnliche Versuche 
gemacht hatte, welche mir aber nicht gelungen waren. Gerade die Kreuzung 
im Winkel von 60 ◦ . hat das glückliche Resultat herbeigeführt. Dieses Verdienst 
gebührt Hrn. Prof Reusch und es ist Unrecht, wenn es ihm von anderer Seite 
streitig gemacht werden sollte. 

Homburg v. d. Höhe den 21. Oct. 1869. 
Wilhelm Steeg. 

Annalen der Physik und Chemie (Leipzig) 138, 628–638 (1869) 
Investigation into mica combinations; by E. Reusch. 

(From the monthly reports of the Academy, July 1869.) 

1. If an even number of thin plates of biaxial mica are placed on top of each other 
in such a way that the main sections (supplementary lines) of the plates cross 
alternately at 90 ◦ ., even with a moderate number of crossings, a preparation is 
obtained that behaves almost like a uniaxial crystal. If the main mica sections 
coincide with the crossed polarization planes, the imitation is complete; if,



Optical Investigations on Periodic Multilayers of Mica 9

however, the preparation is rotated in its plane, the color rings remain, but 
the arms of the black cross lighten, and after a rotation of 45 ◦ ., only a short-
armed cross remains in the innermost ring. Nörremberg, who carried out this 
experiment, was prompted to do it by the well-known work of Senarmont on 
mica and Rochelle salt. Quenstedt’s Mineralogy (2nd edition, p. 239) is, to my 
knowledge, the only text in which this experiment is mentioned. Incidentally, Mr. 
Steeg in Homburg (No. 77 of his 1867 catalogue) supplies these preparations in 
excellent beauty. 

2. Recently, I have tried new mica combinations by which the effect of right- or 
left-rotating uniaxial crystals could be imitated. With the help of the following 
figures, I will first give an idea of these combinations. 

Cardboard boxes were glued to two glass plates, each of which had previously 
been provided with three rectangular cutouts intersecting at 60 ◦ . for the insertion 
of the elongated mica lamellae. The lamellae themselves came from biaxial mica 
with an axis angle of over 70 ◦ .; they were as thin as possible and of the same 
thickness, and in all of them, the supplementary line (the main cut) coincided 
with the longer dimension. Suppose you have 48 lamellae; one half is now used 
to layer the lamellae in the order 1, 2, 3 to form a staircase rising from left to right 
as shown in Fig. 5; the other half is layered to form a staircase rising from right 
to left as shown in Fig. 6. Before placing a new lamella on top, a drop of thick 
copal varnish is placed on the one lying on top, and the newly placed lamella is 

Fig. 5 

Fig. 6



10 E. Reusch and A. Lakhtakia

lightly pressed down. In this way, two preparations are obtained, the lamellae of 
which rise to the right in the section marked R (Fig. 5) for an observer who looks 
at the staircase from the side and to the left in L (Fig. 6). The botanist who, in 
order to determine the direction of the winding of a screw, stands on its axis will, 
of course and perhaps with greater consistency, call the section R a left-handed 
one and the section L a right-handed one; in the following, however, I will stick 
to the concept of right and left screws, which is common in technology and in 
everyday life. 

The preparations R and L now behave in the central regular hexagonal 
covering very similarly to a right- or left-turning rock crystal. After just four 
to six turns of the not excessively thin mica, the direction of rotation can be 
determined by turning the upper Nicol prism; in the Nörremberg instrument with 
a large field of view, one can see the ring system with the bluish central cross and, 
when both preparations are covered, very satisfactory results of the Airy spirals 
can be seen. 

Exactly the same effects are obtained with two preparations in which four 
lamella systems are layered at 45 ◦ . to form a right and a left staircase. 

The preparations I first made consisted partly of lamellae that were not very 
thin and not of exactly the same thickness, and partly the number of turns was 
small (3 to 6). I therefore turned to Mr. Steeg and after a short time received from 
him two pairs of 60 ◦ . preparations of surprising size and extraordinary beauty, 
which particularly show the color change brilliantly when the upper Nicol prism 
is rotated. One pair consists of 30 lamellae of 1/8 λ. each, the other of 36 lamellae 
of even lesser thickness. The first pair gives a rotation of 150 ◦ . for red light, which 
corresponds to a quartz thickness of about 8 mm. 

As proof of the great certainty and skill with which Mr. Steeg knows how 
to handle the mica, I state that the 72 lamellae of the second pair, 12 mm wide 
and 30 mm long, were cut out of the same plate. From a thin plate (1/8 λ.), for 
which I owe the special kindness of Mr. Steeg, I later made preparations with 
four systems of lamellae at 45 ◦ ., which gave the Airy spirals, while my first 
preparations showed the color change when the Nicol prism was rotated, but 
a confused image of the rings when covered. 

If such a mica combination is rotated in its plane in converging light with 
crossed polarization planes, the rings remain, but the arms of the black cross 
undergo changes; in particular, one can see how black spots alternately enter and 
exit the ends of the diameters of the innermost ring that fall into the polarization 
planes. Likewise, in parallel light, the coloring undergoes small changes when 
the Nicol prism is rotated, but more in intensity than in hue. 

I have found that quartz can be given these properties of a mica combination 
by inserting an eighth-undulation mica plate with right-angled crossing cuts 
above and below it. The mica combinations can therefore be regarded as 
elliptically right- and left-polarizing media, which come closer to quartz the 
thinner the lamellae and the greater the number of turns. 

Likewise, the modifications of the black cross of the Nörremberg combination 
discussed under (1) can be produced on a calcite plate cut perpendicular to the
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axis by connecting it in the manner described with the eighth undulation plates 
and rotating the whole in its plane; one therefore has in the mica combination the 
appearance as if a uniaxial non-rotating crystal that is elliptically polarized and 
analyzed. 

3. When the lamellae are layered at 60 ◦ ., equilateral triangles are formed on the sides 
of the central hexagon, in which only two systems of lamellae intersect each other 
alternately at 60 ◦ .. It is easy to see that these triangles are elliptical, right or left-
handed, depending on their position. This prompted me to first investigate the 
combination of two plates of any thickness, whose main sections form an angle 
other than 90 ◦ .. Such a combination generally produces light that is elliptically 
polarized to the right or left, i.e., it is possible to determine the direction of 
rotation by rotating the upper Nicol prism, but when the combination is rotated 
in its plane, the intensity and probably also the nuance of the color change. The 
experiment is successful with any two mica or gypsum plates, or by combining 
mica with gypsum, provided that their colors do not belong to too high an order. 

In the following, I will only deal with mica plates of the same thickness. 
Two such plates, in which, as before, the longer dimension corresponds to the 
main section, can now be put together to form either a right step A (Fig. 7) or  
a left step B (Fig. 8). Two such steps always have opposite optical rotations, but 
the direction of the rotation is determined by the thickness of the plates. If, for 

Fig. 7 

Fig. 8
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example, the plates show a second-order green, the right-hand step A also gives 
a right-hand rotation; for plates that show a first-order yellow, it is the other 
way round. The angle of the main sections has no influence on the direction of 
rotation, only it must deviate considerably from 0 ◦ . and 90 ◦ .. If, for example, two 
60-degree steps A and B with parallel main sections are placed on top of each 
other, there is always a rotation in the direction of the previous step. If the steps 
are crossed at right angles, no effect is found in the middle overlap, whatever the 
azimuth of the step connection: the two arms of the star cross, which is created 
by the overlap of the plates of different steps, have opposite rotation. 

Of greater interest, however, is the case where many equal steps made of 
very thin mica lamellae are layered into a right or left step column: in this case, 
the right step column turns right, the left one left. This immediately makes it 
possible to understand, for example, the effects of triangles a, b, c in the 60-
degree combination Fig. 5; the first two belong to a right step column, the last 
one to a left one. The triangles a'

., b'
., c'

. naturally work like the opposite equal-
armed ones. The same rule determines the directions of rotation in the outer star 
points in the 45-degree combination of four lamella systems. 

Such step columns show another peculiarity: in converging light, one can see 
through the overlap a two-axis ring system, the supplementary line of which 
bisects the acute angle of the main sections of the mica lamellae and whose axial 
angle is smaller than that of the applied mica. The black hyperbolas, however, 
only appear when the supplementary line of the combination mica makes 45 ◦ . 
with the polarization planes: if it coincides with one or the other, the innermost 
rings contain only black dots. 

The effect of a stepped column can be imitated with a fair approximation 
on a thick mica plate by inserting it between two eighth-undulation plates with 
main sections crossed at right angles in such a way that the main section of the 
mica plate makes 45 ◦ . with the latter; this combination has a different direction 
of rotation in parallel light, depending on whether the main section of the plate 
bisects one or the other pair of vertex quadrants formed by the main sections of 
the eighth-undulation plates. This is reminiscent of an arrangement described by 
J. Müller (Lehrb. d. Physik, 7th ed., I, p. 906), in which the effect of quartz is 
imitated, at least in parallel light, by an analogous connection of a gypsum plate 
with two quarter-undulation mica plates. 

4. The optical effects of the mica combination discussed so far allow for a 
mathematical treatment, which will probably be much less difficult for the 
phenomena in parallel light than for those in converging light. Perhaps a capable 
calculator will be prompted to take on this not entirely thankless task. 

Whether these combinations are capable of giving us information or at least 
hints about the association of molecules endowed with circular polarization is 
something that only the future will tell. For the time being, I can only offer a weak 
analogy and a few conjectures in this regard, which I would like to recommend 
to the indulgence of experts.
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In an earlier communication on the so-called lamellar polarization of alum2 ), I 
tried to prove that this is a weak double refraction as a result of internal tensions, 
which must be imagined to be effective in the octahedron surfaces in such a way 
that the optical elasticity in these surfaces is the same in all directions, but smaller 
than perpendicular. Furthermore, I showed how the effect of an optically active 
alum octahedron or a preparation made from it can be completely imitated in the 
four distinct quadrants by four thin mica plates on two parallel cube surfaces. 
However, this mica preparation does not have any overlap rings, whereas the 
nerve of the new preparations lies precisely in the overlaps. This raises the 
converse question of the crystal structure that corresponds to a mica combination 
with overlaps. 

An obvious idea is the following: in the ideal active alum octahedron, the 
tension planes parallel to any octahedral surface only extend as far as the three 
right-angled axial planes; however, it is also conceivable that in a crystal, the 
disturbance of the original structure caused by internal tensions and contractions 
can be traced back to one or more different tension planes inclined against the 
direction of the light passing through, which pass through the entire crystal in a 
constant direction. Now, we know very little about the normal crystal structure 
and consequently even less about the disturbances that actually exist in it: if 
one wants to tackle the matter at all, one is limited for the time being to a few 
instinctive assumptions. 

In the regular system, the case of individual non-continuous tension planes is 
realized in the octahedron of the active alum octahedron. The optical phenomena 
must become more complicated when other surfaces, e.g., that of the leucito-
hedron, appear as individual tension surfaces (leucite, analcime?). The circular 
polarization of sodium chloride discovered by Marbach is possibly the result 
of tensions along the dodecahedron surfaces, combined with secondary tensions 
along the surfaces of the right or left tetrahedron; the 45-degree mica combination 
of four lamella systems perhaps gives an example of this, given the extremely 
weak effect of the individual turns. 

The same mica combination perhaps also corresponds to the case of circular 
polarization in the square system. Of the four lamellar systems, 1 and 3 would 
somewhat represent the structure of the uniaxial non-rotating crystal; lamellar 
systems 2 and 4 would be the equivalent of continuous tensions along the surfaces 
of the right or left hemioctahedron. The appearance of a single tension plane 
inclined against the axis, or the unequal intensity of the individual tensions, 
would have to be manifested by a biaxial attitude of the optical phenomena 
(dislocation of the black cross in beryl, yellow prussiate of blood, etc.). 

The circular polarization in the rhombohedral system is probably the result 
of three continuous tension planes that are equally inclined to the axis and 
that perhaps follow the surfaces of one or the other of the two associated half-

2 Reusch, E.: Ueber die sognenannte Lamellarpolarisation des Alauns. Annalen der Physik und 
Chemie (Leipzig) 132, 618–622 (1867). 
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scalenohedrons. The idea of the possibility of such internal tensions is probably 
more obvious in silica than in any other substance. If the three tensions are 
completely equal, then one would have the normal right- or left-turning effect 
of quartz; if all three tensions disappear, or if they balance each other out, then 
the purely uniaxial effect without rotation would remain, as is observed in places 
on many amethysts. However, the possibility still remains that, depending on 
the circumstances, these three tensions are of unequal intensity, or are reduced 
to two, and then one would have the two-axis elliptical right- or left-turning 
polarization that occurs so prominently in some quartz, as observed in the step 
columns discussed earlier, or in preparations in which one of the three lamellar 
systems intentionally consists of somewhat denser or thinner mica. 

With regard to the various phenomena on quartz and amethyst, I would like to 
refer to the extensive and well-organized observations by Dove in his theory of 
colors (pp. 247–260). 

Finally, I would like to note that the condensation of the effects of mica 
combinations may also be of some value for understanding certain phenomena 
on mica itself. The changes in the ring system in twins, as well as the often very 
significant changes in the angle of the optical axes on the same piece, can be 
understood to some extent if one assumes regular intergrowths and penetrations 
of different individuals. I owe my knowledge of these phenomena largely to the 
information and many kind mica shipments from G. Rose, and it was these that 
originally gave me the impetus to produce the new mica combinations. 

Tübingen, June 29, 1869. 
Addition. 

I have learned from a reliable source that some physicists have claimed that the 
proof of rotation in layered mica lamellae comes from Nörremberg. I now take 
the liberty of explaining that among Nörremberg’s preparations, which have been 
transferred in equal parts to the local collection and to that of the polytechnic school 
in Stuttgart, only right-angled combinations occur. I discovered the right and left 
rotation caused by 60-degree combinations during the Whitsun week of this year 
through independent experiments, and as soon as I was completely sure of the 
result, I asked Mr. Steeg in Homburg to produce such preparations; a request that 
he fulfilled in the excellent manner described earlier. To confirm my claims, two 
documents may serve that Prof. Poggendorff will be kind enough to show to any 
doubters. 

Tübingen, Oct. 24, 1869. 
E. Reusch. 

Editor’s note. 
The two documents we are talking about here are: a certificate from Prof. Zech 

and a letter from the optician Mr. W. Steeg. 
The first one finally states: 
The undersigned is therefore entitled and qualified, especially because of his 

frequent contact with Nörremberg from 1854 to 1862, to state that Nörremberg 
never made any other mica combinations than right-angled ones. In the physics
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cabinet here there is not a single preparation by Nörremberg in which two mica 
sheets were crossed at an angle other than a right one, and in particular none that 
shows a rotation of the plane of polarization. 

Stuttgart, Oct. 20, 1869. 
Prof. Dr. Zech. 

And the latter’s letter says: 
— I would like to point out that I know for certain that Nörremberg has never 

produced such circularly polarizing preparations. I have had a lot of contact with 
him and have seen his entire collection. 

His preparations of such mica were only crossed at right angles in order to prove 
the correctness of Sénarmont’s hypothesis that one can produce a uniaxial body, 
such as calcite, from thin lamellae of biaxial mica. 

The ingenious idea of crossing the mica lamellae at angles of 60 ◦ ., i.e., in a 
hexagonal sense, came first and solely from Prof. Reusch, as can be seen from his 
letter to me dated May 16th. 

The matter interested me so much because I had already made similar attempts 
before, but had not succeeded. It was precisely the crossing at an angle of 60 ◦ . that 
brought about the happy result. This credit goes to Prof. Reusch, and it would be 
unjust if anyone else were to dispute it. 

Homburg v. d. Höhe Oct. 21, 1869. 
Wilhelm Steeg. 

Translator’s Notes 

1. An earlier version of Reusch’s journal paper appeared in the Monthly Report of 
the Royal Prussian Academy of Sciences in Berlin for July 1869 [1]. 

2. An English-language translation of Ref. [1] was provided by W. G. Lettson in 
1870 [2]. 

3. Reusch slightly revised Ref. [1] for publication in the December 1869 issue 
of Annalen der Physik und Chemie, and he also added a paragraph dated 
October 24, 1869. Furthermore, this paper [3] had an accompanying note from 
Johann Christian Poggendorff, the Editor of the journal, and the testimonies of 
Paul Heinrich Zech (Polytechnikum Stuttgart) and Wilhelm Steeg. This chapter 
provides an English-language translation of all of these items together. 

4. A French-language commentary on the research of Reusch encompassing the 
1869 paper was published in 1870 [4]. 
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Unidirectional Waves in Discrete 

Plasmonic Waveguides 

Vadim A. Markel 

1 Introduction 

Linear periodic chains of metal nanoparticles have attracted significant attention in 

the past 20 years or so with envisaged applications in spectroscopy and sensing [1– 

4] as well as in waveguiding and information transfer [5–8]. In our previous work, 

we investigated the electromagnetic properties of simple linear plasmonic chains 

using the point dipole approximation [9–12]. Theories accounting for higher-order 

multipole interactions have also been developed [13–15]. Topological properties of 

Bloch modes in chains with a more complicated geometry were studied in [16, 17]. 

Additional references can be found in the review articles [18, 19]. 

One aspect of plasmonic chains that received little attention so far is direc-

tionality. The radiation pattern of an electrically small antenna is symmetric with 

respect to the coordinate inversion .r → −r. If such an antenna illuminates a 

small central segment of a chain that is invariant under the same transformation, 

the electromagnetic excitation in the form of a surface plasmon polariton (SPP) will 

travel in both directions with the same amplitude. However, if we give the chain a 

sense of direction, the inversion symmetry of the system “antenna+chain” would be 

broken. In this case, it is possible to engineer the source antenna so that it would 

send the SPP in one direction only. The direction can be switched by tuning the 

phase relations of the elementary dipoles comprising the antenna. When placed in 

free space, the source antenna of this type would radiate as a single dipole (in the 

radiation zone). However, when placed in a close vicinity of a directional chain, 

it will send the SPP in only one of the two possible directions, depending on its 

internal phase relations. Intuition may suggest that such direction-selective coupling 

is possible only if non-reciprocal materials are used in the chain. However, we will 
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show that non-reciprocity is not required. This is so because the operator of dipole 

sum, which plays a fundamental role in the theory of discrete waveguides, is not 

generally symmetric, even if all the materials involved are reciprocal. 

This chapter contains the general theory of directional discrete waveguides 

in the framework of the point dipole approximation and a numerical example 

demonstrating the feasibility of direction-selective coupling. While under some 

conditions the dipole approximation may not be accurate, the basic observation that 

the dipole sum in chains with a sense of direction is not symmetric is not expected 

to change if we account for the higher multipoles or use a more general method 

for solving the electromagnetic problem. In Sect. 2, we describe the geometry of a 

discrete structured chain. Section 3 introduces the coupled-dipole equation and the 

dipole sum. In Sect. 4, we derive the dispersion equation that is specific to metal 

particles with the Drude dielectric function. In Sect. 5, we discuss some algebraic 

properties of the dispersion equation, which will prove useful for understanding 

the direction-selective coupling. In Sect. 7, we provide a simple example of a 

directional chain and demonstrate that direction-selective coupling is possible. 

Section 8 contains a discussion and further examples. 

Gaussian system of base dimensions and the corresponding form of electromag-

netic equations are used throughout. We work in the frequency domain using the 

.exp(−iωt) phasor convention. 

2 Waveguide Geometry 

Consider a linear discrete waveguide consisting of periodically arranged, electrically 

small particles of the same permittivity .e(ω) embedded in a host medium with the 

constant dielectric permittivity .eh ≥ 1 where .eh = 1 corresponds to vacuum and 

. ω is the frequency. We work in the dipole approximation, so that the only relevant 

parameters of a particle are its location and the dipole polarizability tensor .α̂(ω). 

We will use the model of metal ellipsoids to obtain physically accessible values of 

.α̂(ω) while making sure that the dipole approximation is still valid. In this case, the 

location coincides with the ellipsoid center and .α̂(ω) can be expressed analytically 

in terms of the ellipsoid semi-axes and .e(ω). While the ellipsoids comprising the 

waveguide can have different shapes and orientations, we assume that the material 

from which the particles are made is the same; otherwise, theory becomes too 

complicated. 

Geometry of a discrete waveguide is illustrated in Fig. 1. The system is periodic 

in the Z direction with the lattice step h, and we label the unit cells by . n =
0,±1,±2, . . .. Each cell contains .p > 0 particles labeled by .ν = 1, 2, . . . , p. We  

introduce the composite index .(nν) to label the particles. The locations and dipole 

moments of all particles are denoted by .rnν = (xν, yν, znν) and . dnν . Here . xν and . yν

are independent of n due to periodicity and 

.zn+1,ν = znν + h . (1)
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Fig. 1 Schematic illustration of a discrete waveguide with .p = 6 particles per cell. Three unit 

cells are shown including the reference cell . C with the index . n = 0

As the polarizabilities are also periodic, we write .α̂ν(ω) for .ν-th article in an 

arbitrary cell. The set of points . r0ν together with the polarizabilities . ̂αν define the 

reference unit cell . C. Thus, the waveguide consists of three-dimensional rectangular 

cells periodically repeated in the Z-direction; however, there is no periodicity in X 

or Y . Note that the transverse dimensions of a unit cell . Ax and . Ay are ambiguous 

and do not enter any equations; we have introduced these quantities in the figure 

only for visual convenience. 

3 Coupled Dipole Equation and the Dipole Sum 

The frequency-domain coupled dipole equations in the discrete waveguide have the 

form 

.χ̂ν(ω)dnν = enν +
7

mμ

(mμ) /=(nν)

Ĝ(rnν, rmμ; ω)dmμ , (2) 

where 

.χ̂ν(ω) = α̂−1ν (ω) (3) 

is the inverse polarizability tensor, .dnν are the dipole moments, . enν are the external 

fields (e.g., generated by a source antenna), . ω is the working frequency, and 

.Ĝ(r, r'; ω) is the free-space Green’s tensor for the electric field. We have tacitly 

assumed that .α̂ν(ω) are invertible, which is the case for ellipsoids with any realistic 

dielectric function .e(ω) /= eh. The condition .(nν) /= (mμ) ensures that the electric 

field at the particle .(nν) is the sum of the external field . enν and the fields generated 

by all other particles excluding the particle .(nν) itself. Additional details pertaining 

to the form of the coupled dipole equation (2), alternative forms of this equation,
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and accounting for the radiative correction to the quasi-static polarizability can be 

found in [20]. 

The expression for . Ĝ applicable to free space is given in the Appendix. What 

is important for us now is that the Green’s tensor satisfies the following symmetry 

properties: 

.Ĝ(r, r'; ω) = ĜT (r', r; ω) , . (4a) 

Ĝ(r, r'; ω) = Ĝ(r + sẑ, r' + sẑ; ω) . (4b) 

Here the superscript T denotes matrix transposition, and s is an arbitrary real 

scalar (translation along the Z axis). The first equation aforementioned is Lorentz 

reciprocity, and the second is a consequence of the translational invariance of the 

waveguide. If the waveguide is embedded in an infinite homogeneous space, as we 

assume here, the Green’s tensor possesses even stronger symmetries. We then have, 

additionally, .Ĝ(r, r'; ω) = ĜT (r, r'; ω) and .Ĝ(r, r'; ω) = Ĝ(r + s, r' + s; ω), 

where . s is an arbitrary translation vector. However, if the waveguide is placed in an 

external cladding, the latter properties may be lost while the properties in (4) would 

survive. Therefore, the theoretical results presented further are generalizable to the 

case of an external cladding as they rely only on (4) and not on any of the stronger 

symmetries. 

To find guided waves, we set external fields . enν to zero and seek Bloch-periodic 

solutions to (2) of the form 

.dnν = dν ei (qh)n . (5) 

Upon substituting this ansatz into (2), we obtain the equation 

.χ̂ν(ω)dν =
7

mμ

(mμ) /=(nν)

Ĝ(rnν, rmμ; ω) ei (qh)(m−n) dμ . (6) 

Since summation in (6) is carried out over all integer m, the result does not depend 

on n, and we can set .n = 0 in the right-hand side of (6). Using this observation, we 

can rewrite (6) as 

.χ̂ν(ω)dν =
p

7

μ=1
Ŝνμ(ω, q)dμ , (7) 

where 

.Ŝνμ(ω, q) :=
∞
7

m=−∞
(mμ) /=(0ν)

Ĝ(r0ν, rmμ; ω) ei (qh)m (8)
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is known as the dipole sum. Here .1 ≤ ν, μ ≤ p. Note also that . r0ν are in the 

reference cell . C. 

Most previous investigations of discrete plasmonic waveguides were restricted 

to simple periodic 1D chains or 2D lattices where all particles are equivalent [18], 

although more complicated geometries have also been considered [16, 17]. In the 

case of simple periodic 1D chains, the dipole sum is reduced to a .3 × 3 tensor 

.Ŝ(ω, q), which is diagonal in the reference frame of Fig. 1. It is straightforward to 

show that .Ŝ(ω, q) = ŜT (ω, q) and .Ŝ(ω,−q) = Ŝ(ω, q). These symmetry relations 

are special cases of the more general relation 

.Ŝνμ(ω,−q) = ŜT
μν(ω, q) , (9) 

which is applicable to structured chains. And while it is possible, under some 

additional conditions, to have .Ŝνμ(ω,−q) = Ŝνμ(ω, q), the latter relation does not 

always hold. This observation is the main difference between simple and structured 

chains, and it will be exploited further to find localized excitation schemes that 

excite only the SPPs propagating in a given direction along the chain. We refer to 

this phenomenon as to the direction-selective coupling and to the resulting SPPs as 

unidirectional. 

We can prove (9) by starting from the definition (8) and following the chain of 

equalities 

. Ŝνμ(ω,−q) =
∞
7

m=−∞
(0ν) /=(mμ)

Ĝ(r0ν, rmμ; ω) e−i (qh)m

=
∞
7

m=−∞
(0ν) /=(−mμ)

Ĝ(r0ν, r−mμ; ω) ei (qh)m

=
∞
7

m=−∞
(0ν) /=(mμ)

Ĝ(rmν, r0μ; ω) ei (qh)m

=
∞
7

m=−∞
(0ν) /=(mμ)

ĜT (r0μ, rmν; ω) ei (qh)m

= ŜT
μν(ω, q) . (10) 

To derive the third expression aforementioned, we have used translational invariance 

of . Ĝ, Eq.  (4b). In the fourth expression, we have used Lorentz reciprocity, Eq. (4a).
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4 Inverse Polarizability and Dispersion Equation 

Equation (6) is a set of linear homogeneous equations with a .3p×3p matrix . M(ω, q)

(we denote 3p-dimensional quantities such as matrices and vectors by a straight 

typewriter-style letters like . M or . f). Correspondingly, the dispersion equation has 

the general form .det[M(ω, q)] = 0. The set of complex pairs .(ω, q) that satisfy 

this equation is a rather complicated four-dimensional algebraic variety. To simplify 

the problem, we can apply various physically motivated restrictions. For example, 

we will consider further only real frequencies . ω. We will also use a more specific 

expression for .χ̂ν(ω), which will allow us to disentangle the material and geometric 

properties of the chain in the expression for .M(ω, q). 

First, to ensure energy conservation and mathematical stability of numerical 

results, we account for the first nonvanishing radiative correction to the quasi-static 

polarizability of an ellipsoid [20] by writing 

.χ̂ (ω) = α̂−1qs (ω)− i
2k3

3
Î , k = √

eh

ω

c
. (11) 

Here .α̂qs(ω) is the quasi-static polarizability, . Î is the identity tensor, and k is 

the wave number in the host medium. In the case of ellipsoids, .α̂qs(ω) can be 

conveniently written as 

.α̂qs(ω) = ehv

4π

3
7

j=1

ûj ⊗ ûj

eh/[e(ω)− eh] + xj

, (12) 

where . ̂uj are three mutually orthogonal unit vectors, which define the principal axes 

of the ellipsoid, and . xj are the corresponding depolarization factors (. x1+x2+x3 =
1). The ellipsoid volume v is given in terms of the three semi-axes . aj by 

.v = 4π

3
a1a2a3 , (13) 

and the depolarization factors . xj can be expressed as functions of the two 

independent ratios .a1/a2 and .a1/a3. Now we can easily invert (12) and obtain for a 

generic ellipsoid 

.χ̂(ω) = 4π

ehv

⎡

⎣

eh

e(ω)− eh

Î +
3

7

j=1
xj ûj ⊗ ûj

⎤

⎦ − i
2k3

3
Î . (14) 

It is notable that the scalar factor 

.s(ω) := eh

e(ω)− eh

(15)
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is independent of the ellipsoid shape while the tensor 

.K̂ :=
3

7

j=1
xj ûj ⊗ ûj (16) 

is independent of the material properties. The function .s(ω) defined in (15) is known 

in the theory of composites as the Bergman–Milton spectral parameter. Further, the 

radiative correction depends only on the frequency. We have therefore disentangled 

the geometric and material properties of an ellipsoid. Returning to the problem at 

hand, we can write for the .ν-th ellipsoid 

.χ̂ν(ω) = 1

βν

l

s(ω) Î + K̂ν

l

− i
2k3

3
Î , (17) 

where 

.βν :=
ehvν

4π
. (18) 

Equation (17) is the expression we sought. Here only the geometric tensor . K̂ν and 

the volume-related coefficient . βν depend on the ellipsoid index. Note that all tensors 

. K̂ν are symmetric, so that .K̂ν = K̂T
ν . 

Although equation (17) applies to any material of the ellipsoids, we will special-

ize further to the case when this material is a Drude metal with the permittivity 

.e(ω) = e0 −
ω2

p

ω(ω + i γ )
, (19) 

where . ωp is the plasma frequency, and . γ is the relaxation constant. We then have 

.s(ω) = eh

ω(ω + i γ )

(e0 − eh)ω(ω + i γ )− ω2
p

. (20) 

This expression becomes particularly simple in the case .e0 = eh. 

We now return to (7) and use the functional form (17) of .χ̂ν(ω). This results in 

the equation 

.s(ω)dν = βν

⎡

⎣

p
7

μ=1
Ŝνμ(ω, q)dμ + i

2k3

3
dν

⎤

⎦ − K̂ν dν . (21) 

We need to find points in the two-dimensional region 

.D :=
l

−π

h
≤ q ≤ π

h
; ω > 0

l

(22)
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of the .(q, ω)-plane for which (21) has nontrivial solutions. Of course, this is possible 

only if .γ = 0 in the Drude formula and then only for .q > k (above the light line). 

To find the dispersion curves numerically, we will set .γ = 0 in the expression for 

.s(ω) (20), so that 

.s(ω) −−→
γ=0

s0(ω) := eh ω2

(e0 − eh)ω2 − ω2
p

. (23) 

However, when simulating propagation due to an external excitation (e.g., by an 

antenna), we will include finite losses in the model. 

5 Algebraic Considerations 

For each pair of indexes .(ν, μ), the tensor .Ŝνμ(ω, q) is a .3 × 3 matrix. We can 

arrange these matrices into a .3p × 3p matrix .S(ω, q) as shown further: 

.S(ω, q) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Ŝ11(ω, q) Ŝ12(ω, q) . . . Ŝ1p(ω, q)

Ŝ21(ω, q) Ŝ22(ω, q) . . . Ŝ2p(ω, q)

. . . . . . . . . . . .

. . . . . . . . . . . .

Ŝp1(ω, q) Ŝp2(ω, q) . . . Ŝpp(ω, q)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (24) 

We denote matrices of the size .3p × 3p by straight, typewriter-style letters such as 

. S. We can use (4) to show that 

.S(ω,−q) = ST (ω, q) . (25) 

We also introduce two block-diagonal matrices 

.B =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

β1Î 0 . . . 0

0 β2Î . . . 0

. . . . . . . . . . . .

. . . . . . . . . . . .

0 0 . . . βp Î

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, K =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

K̂1 0 . . . 0

0 K̂2 . . . 0

. . . . . . . . . . . .

. . . . . . . . . . . .

0 0 . . . K̂p

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (26) 

Then Eq. (21) takes the following form: 

.s(ω) d = W(ω, q) d , (27) 

where 

.W(ω, q) = B
l

S(ω, q)+ i
2k3

3
I

l

− K (28)
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and . d is a column-vector of dipole moments . dν of the length 3p: 

.d =
l

d1 d2 . . . . . . dp

lT
. (29) 

Equation (27) has nontrivial solutions if and only if one of the eigenvalues of . W(ω, q)

is equal to .s(ω). 

5.1 Ellipsoids of Equal Volume 

Let us first analyze the relatively simple case when . B is proportional to the identity 

matrix, .B = βI. This happens if all ellipsoids are of the same volume (but not 

necessarily of the same shape and orientation). Then the symmetry property (25) of 

.S(ω, q) is inherited by .W(ω, q). Indeed, we have in the special case considered 

.W(ω, q) = β

l

S(ω, q)+ i
2k3

3
I

l

− K . (30) 

Here . I is the .3p × 3p identity matrix. Since . K is symmetric and independent of q, 

we have 

.W(ω,−q) = WT (ω, q) (if βν = β = const) . (31) 

It immediately follows that .W(ω, q) and .W(ω,−q) have the same eigenvalues. 

Therefore, if a point .(ω, q) is on the dispersion curve, then .(ω,−q) is also on 

the dispersion curve (because .s(ω) is independent of q). We thus have proved the 

following theorem: 

Theorem 1 (Eigenvalues of .W(ω, q) for ellipsoids of fixed volume) For 

structured chains made of general ellipsoids of equal volume, the following 

statements are true: 

(i) .W(ω, q) and .W(ω,−q) share the same set of eigenvalues .λi(ω, q). 

Therefore, the eigenvalues are even functions of q, .λi(ω,−q) = λi(ω, q). 

(ii) The dispersion curves .q = q(ω) are symmetric with respect to the line 

.q = 0. 

Moreover, it is clear that, if .f(ω, q) and .f(ω,−q) are the right eigenvectors 

of .W(ω, q) and .W(ω,−q), respectively, with the same eigenvalue .λ(ω, q), then 

.f(ω,−q) is a left eigenvector of .W(ω, q), and .f(ω, q) is a left eigenvector of 

.W(ω,−q). Indeed, start from the definitions
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. W(ω, q) f(ω, q) = λ(ω, q) f(ω, q) ,

W(ω,−q) f(ω,−q) = λ(ω, q) f(ω,−q) . (32a) 

Transposing the above equations and using (31), we obtain 

. fT (ω, q) W(ω,−q) = λ(ω, q) fT (ω, q) ,

fT (ω,−q) W(ω, q) = λ(ω, q) fT (ω,−q) , (32b) 

which proves the aforementioned statement. 

Theorem 2 (Eigenvectors of .W(ω, q) for ellipsoids of fixed volume) 

Assume that .W(ω, q) has 3p distinct eigenvalues .λi(ω, q) corresponding 

to the eigenvectors .fi(ω, q), .i = 1, 2, . . . , 3p. Then .W(ω,−q) has 3p 

eigenvectors .fi(ω,−q) corresponding to the same distinct eigenvalues and 

the two sets of eigenvectors are mutually dual bases so that 

. fTj (ω,−q) fi(ω, q) = Zi(ω, q) δj i

with .Zi(ω, q) /= 0 and .Zi(ω,−q) = Zi(ω, q), where . δij is the Kronecker 

delta-symbol. 

Note that there is no complex conjugation in the orthogonality relation of 

Theorem 2. We can still normalize the eigenvectors by the conventional condition 

.f
†
i (ω, q) fi(ω, q) = 1 . (33) 

Here . † denotes Hermitian conjugation (transposition and entry-wise complex 

conjugation). 

Proof The first statement of Theorem 2 is obvious. Eigenvectors of any non-

degenerate matrix form a basis, and .W(ω, q) and .W(ω,−q) share the same set of 

distinct eigenvalues. To show that the two bases are dual, we can consider the matrix 

element 

.fTj (ω,−q) W(ω, q) fi(ω, q) (34) 

and use the relations (32). Acting with .W(ω, q) to the left and to the right, we obtain 

the equality 

.λi(ω, q) fTj (ω,−q) fi(ω, q) = λj (ω, q) fTj (ω,−q) fi(ω, q) . (35)
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If .j /= i, the aforementioned equality implies that .fTj (ω,−q) fi(ω, q) = 0. This  

proves mutual orthogonality of the bases. It remains to show that .Zi(ω, q) /= 0. 

Assume that .Zi(ω, q) = 0 for some i. We know that .fTj (ω,−q) fi(ω, q) = 0 for all 

.j /= i. Therefore, the set of .fj (ω,−q) with .j /= i forms the orthogonal complement 

to .fi(ω, q). If, in addition, .fi(ω,−q) has zero projection onto .fi(ω, q), the  set of all  

vectors .fj (ω,−q) is the same orthogonal complement and therefore does not form 

a complete basis in contradiction to the assumption that .W(ω, q) is non-degenerate. 

Therefore, .Zi(ω, q) = 0 is not a possibility.  U
We can now write the following spectral expansion for .W(ω, q) (assuming it is 

not degenerate) 

.W(ω, q) =
3p
7

i=1

1

Zi(ω, q)
λi(ω, q) fi(ω, q) fTi (ω,−q) . (36) 

Remark 1 (Degeneracy of .W(ω, q)) If .W(ω, q) is degenerate but not defec-

tive (this means that its eigenvectors still form a complete basis), we can 

always construct dual bases of eigenvectors of .W(ω, q) and .W(ω,−q) accord-

ing to the standard procedure. This case does not pose any difficulties, and 

the statements of Theorem (2) remain true. However, .W(ω, q) is, in general, 

neither symmetric nor Hermitian, and proving non-defectiveness for matrices 

with no special symmetry is usually difficult. From the physical point of view, 

defectiveness occurs due to random degeneracy with a probability close to 0 

and therefore almost never. In simulations, it is safe to ignore this possibility. 

5.2 Ellipsoids of Varying Volume 

It is clear on physical grounds that allowing the volume of ellipsoids to vary should 

not cause any new effects. In fact, the spectral properties of .W(ω, q) remain in 

this case almost the same (with a slight modification), but the proofs are more 

difficult because . B is no longer proportional to the identity matrix and the symmetry 

relation (31) does not hold. 

We start from the definition (28) where . B is not necessarily proportional to the 

identity matrix and write it in the form 

.W(ω, q) = B S(ω, q) + i
2k3

3
B − K . (37) 

Next we change the sign of q in the previous formula. This yields 

.W(ω,−q) = B S(ω,−q) + i
2k3

3
B − K . (38)
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Using the symmetry property (25) of .S(ω, q), we also have  

.W(ω,−q) =
l

S(ω, q) B + i
2k3

3
B − K

lT

, (39) 

where we accounted for the symmetry of . B and . K. Let us denote the matrix in the 

square brackets by .U(ω, q); 

.U(ω, q) := S(ω, q) B + i
2k3

3
B − K . (40) 

We therefore have 

.W(ω,−q) = UT (ω, q) . (41) 

The matrices .S(ω, q) and . B do not generally commute. For this reason, . U(ω, q) /=
W(ω, q). We will, however, prove that .U(ω, q) and .W(ω, q) share the same eigenval-

ues. To this end, we will use the special properties of . B and . K. It will then follow 

from (41) that .W(ω, q) and .W(ω,−q) share the same eigenvalues, even though these 

two matrices are not transposes of each other. 

Theorem 3 (Eigenvalues of .W(ω, q) for ellipsoids of variable volume) 

Conclusions of Theorem 1 carry over to the case when the ellipsoids have 

variable volume. 

Proof We can prove Theorem 3 by noticing that . B is diagonal, and all its elements 

are positive and removed from zero (since the same is true for the volumes . vν). We 

can therefore take the square root of . B and, moreover, this operation is numerically 

stable. Let .B = D D. From the same arguments as earlier, . D is invertible. We can use 

these properties of . B to write 

. W(ω, q) = D
l

D S(ω, q) D + i
2k3

3
B − D−1 K D

l

D−1 ,

U(ω, q) = D−1
l

D S(ω, q) D + i
2k3

3
B − D K D−1

l

D . (42) 

The key observation that we need is that .D−1 K D = D K D−1 = K. This is easy to 
verify directly. Denoting 

.Ws(ω, q) := D S(ω, q) D + i
2k3

3
B − K , (43)
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we arrive at the result 

. W(ω, q) = D Ws(ω, q) D−1 ,

U(ω, q) = D−1 Ws(ω, q) D . (44) 

Here .Ws(ω, q) is the symmetrized form of .W(ω, q) (compare to Eq. 37). In the case 

when .B = βI, the two matrices coincide. It is now easy to see that .Ws(ω, q), .W(ω, q), 

and .U(ω, q) share the same eigenvalues. This proves Theorem 3.  U

Theorem 4 (Eigenvectors of .W(ω, q) for ellipsoids of variable volume) Let 

the symmetrized matrix .Ws(ω, q) have 3p distinct eigenvalues .λi(ω, q), . i =
1, 2, . . . , 3p with the corresponding eigenvectors .fi(ω, q). Then . Dfi(ω, q)

and .D−1fi(ω,−q) are the right and left eigenvectors of .W(ω, q) with the same 

eigenvalues. These two sets of eigenvectors are mutually dual bases. 

The proof is obvious since .Ws(ω, q) satisfies the symmetry property (31), and all 

conclusions of Theorem 2 hold for it verbatim. In particular, (36) holds for .Ws(ω, q). 

We can therefore use (44) to write 

.W(ω, q) =
3p
7

i=1

1

Zi(ω, q)
λi(ω, q) D fi(ω, q) fTi (ω,−q) D−1 . (45) 

The statements of Theorem 4 can be verified directly by using this formula. 

Remark 2 (Normalization) We assume that the vectors .fi(ω, q) (for posi-

tive and negative q) are normalized by the conventional condition 

.f
†
i (ω, q) fi(ω, q) = 1 . (46) 

Then the left and right eigenvectors of .W(ω, q), 

. gi(ω, q) := Dfi(ω, q) , gi(ω,−q) := D−1fi(ω,−q)

are not normalized. However, the overlap coefficients appearing in (45) are 

the same for the normalized and not normalized bases, viz, 

. Zi(ω, q) = Zi(ω,−q) = fTi (ω,−q) fi(ω, q) = gTi (ω,−q) gi(ω, q) .

(47)
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6 Forced Oscillations 

6.1 Response to External Field 

We now consider the response to an external field, e.g., produced by a source 

antenna. To this end, we return to the coupled-dipole equation (2) and seek the 

solution in the form of a Fourier integral 

.dnν =
1

2π

π/h
l

−π/h

d̃ν(ξ) ei ξhn dξ , ν = 1, 2, . . . , p . (48) 

Here .d̃ν(ξ) is the Fourier coefficient to be determined. A similar decomposition can 

be written for the incident field: 

.enν =
1

2π

π/h
l

−π/h

ẽν(ξ) ei ξhn dξ , ν = 1, 2, . . . , p . (49) 

Using the 3p-dimensional matrix notations introduced earlier and the expres-

sion (17) for .χ̂(ω), the coupled-dipole equation (2) can be written as 

. [s(ω) I− W(ω, ξ)] d̃(ξ) = B ẽ(ξ) , (50) 

with the obvious solution 

.d̃(ξ) = [s(ω) I− W(ω, ξ)]−1 B ẽ(ξ) . (51) 

We then substitute this result back to the Fourier integral (48) and find the real-space 

solution 

.dn =
1

2π

π/h
l

−π/h

[s(ω) I− W(ω, ξ)]−1 B ẽ(ξ) ei ξhn dξ . (52) 

In this expression, . dn is the 3p-dimensional vector of dipole moments in the n-th 

cell. The correspondence to the three-dimensional vectors . dnν , that is, 

.dn =
l

dn1 dn2 . . . . . . dnp

lT
. (53) 

Next, we use the spectral expansion (45) to write 

. [s(ω) I− W(ω, ξ)]−1 =
3p
7

i=1
Zi(ω, ξ)

D fi(ω, ξ) fTi (ω,−ξ) D−1

s(ω)− λi(ω, ξ)
. (54)
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Substituting this result into (52), we obtain the spectral solution to the forced 

oscillation problem: 

.dn =
1

2π

π/h
l

−π/h

dξ ei ξhn

3p
7

i=1
Zi(ω, ξ)

D fi(ω, ξ) fTi (ω,−ξ) D ẽ(ξ)

s(ω)− λi(ω, ξ)
. (55) 

In the special case when all ellipsoids are of the same volume v, this expression 

simplifies to 

.dn =
ehv

8π2

π/h
l

−π/h

dξ ei ξhn

3p
7

i=1
Zi(ω, ξ)

fi(ω, ξ) fTi (ω,−ξ) ẽ(ξ)

s(ω)− λi(ω, ξ)
. (56) 

6.2 Localized Excitation of a Surface Plasmon Polariton 

Of special interest is excitation that is localized and, ideally, restricted to the 

reference cell. This means that 

.enν = eν δn0 . (57) 

In this case, 

.ẽν(ξ) = h eν (58) 

is independent of . ξ , as can be easily verified by substitution into (49). In practice, 

the source antenna will illuminate all particles in the chain. However, by using 

directional antennas or by placing them close to the reference cell, we can minimize 

such effects. Mathematically, however, the approximation (58) is convenient as it 

allows one to compute the response due to some elementary excitations, whereas 

more complex and realistic excitations can be considered by linear superposition. 

Assuming (58) is true, we rewrite (55) 

.dn =
h

2π

π/h
l

−π/h

dξ ei ξhn

3p
7

i=1
Zi(ω, ξ)

D fi(ω, ξ) fTi (ω,−ξ) D e

s(ω)− λi(ω, ξ)
, (59) 

where . e is the 3p-dimensional vector whose elements are the electric fields created 

by the source antenna at the particles of the reference cell, 

.e =
l

e1 e2 . . . . . . ep

lT
. (60)
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Equation (59) seems to be a small modification of (55) (the dependence on . ξ and 

the overhead tilde in .ẽ(ξ) are gone; note also the extra power of h in the overall 

coefficient), but it will allow us to make further analytical progress as described 

further. 

For each . ω, the dominant input to the integral (59) is given by the values of 

. ξ such that the denominator .s(ω) − λi(ω, ξ) is small. If the denominator could 

turn to zero, the integral would be ill-defined. However, it cannot turn to zero 

if there is some absorption in the particle material. The approach therefore is to 

compute the dispersion curves by solving the equation .s(ω) = λi(ω, ξ) with zero 

absorption; then evaluate the integral (59) for some small but nonzero absorption. 

In quantum mechanics, similar approximate evaluation of integrals is known as the 

quasi-particle pole approximation. We write 

.s(ω) = s0(ω)+ i σ(ω) , (61) 

where .σ(ω) > 0 and .s0(ω) = limγ→0 s(ω). A particular expression for .s0(ω), 

which can be used conveniently in numerical simulations, is given in (23). Then the 

dispersion curves are obtained by finding all real-valued solutions to 

.s0(ω) = λi(ω, ξ) (dispersion equation for i-th mode) , (62) 

where .ω > 0 and .−π/h < ξ ≤ π/h. 

Not all modes may have such solutions at a given frequency . ω. Let us fix . ω and 

assume for simplicity that real values of . ξ that satisfy (62) exist only for .i = r (the 

resonant mode). If such solutions exist for several values of i, a generalization is 

easily obtained by summation over all resonant modes. Assuming for now that a 

solution exists only for .i = r , we may keep only one term in the summation of (59), 

viz, 

.dn =
h

2π

π/h
l

−π/h

dξ ei ξhn Zr(ω, ξ)
D fr(ω, ξ) fTr (ω,−ξ) D e

s(ω)− λr(ω, ξ)
. (63) 

Due to the symmetry of .λi(ω, ξ), roots of (62) always come in pairs. Consider the 

simplest case when there are only two roots, .ξ = ±q(ω), where .q(ω) > 0 for 

definitiveness. The set of all points .(ω, q(ω)) defines the dispersion relation of the 

chain. We can expand .λr(ω, ξ) for . ξ near the roots .±q(ω) as 

.λr(ω, ξ) ≈ s0(ω)− σ(ω) l(ω) ×
l

q(ω)− ξ , ξ ≈ q(ω)

q(ω)+ ξ , ξ ≈ −q(ω)
. (64) 

Here the factor .σ(ω) has been introduced for convenience and .l(ω) is a new 

independent coefficient. It may be computed numerically as
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.l(ω) := 1

σ(ω)

∂λr(ω, ξ)

∂ξ

l

l

l

l

ξ=q(ω)

. (65) 

Although we do not prove this statement here, .λi(ω, ξ) are real-valued for . ξ > k

(where the solutions to the dispersion equation exist), and therefore, .l(ω) is also 

real. The physical interpretation is that, below the light line, the SPPs propagate 

without radiative losses. However, .l(ω) can be positive or negative. We say that 

dispersion is positive at . ω if .l(ω) > 0 and negative otherwise. 

We can now use (64) to rewrite (63), approximately, as 

. dn =
h Zr(ω, q(ω))

2π σ(ω) l(ω)

×
∞

l

−∞

l

d−(ω)

ξ + q(ω)+ i /l(ω)
− d+(ω)

ξ − q(ω)− i /l(ω)

l

ei ξhn dξ . (66) 

In this expression, 

.d+(ω) := Pr(ω) e , d−(ω) := PTr (ω) e , (67a) 

where 

.Pr(ω) := D fr(ω, q(ω)) fTr (ω,−q(ω)) D . (67b) 

Note that we have expanded the integration in (66) to the real axis. It remains 

therefore to compute the integrals in (66). Consider first the case of positive 

dispersion, .l(ω) > 0. Accounting for the general condition .σ(ω) > 0, we arrive  

at 

.dn =
h Zr(ω, q(ω)) e[i q(ω)−1/l(ω)]h|n|

i σ(ω) l(ω)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

d+(ω) , n > 0

1

2
[d+(ω) + d−(ω)] , n = 0

d−(ω) , n < 0

. (68) 

We thus see that, for a generic point .(ω, q(ω)) on the dispersion curve, it propagates 

to the right and left of the excitation site with the wave numbers .+q(ω) and .−q(ω), 

respectively. The coefficient .l(ω) is the characteristic propagation distance, which 

describes the exponential decay of the SPPs due to Ohmic losses. The amplitudes 

of propagation to the right and to the left are in general not the same and given by 

.d+(ω) and .d−(ω) for positive dispersion, and vice versa for negative dispersion.
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7 Direction-Selective Coupling 

Here we demonstrate direction-selective coupling of SPPs to local excitation 

(confined to the reference cell . C). The question we are asking is whether it is 

possible to achieve direction-selective coupling by illuminating only the dipoles in 

the smallest periodic element of the cell. The latter qualifier is important. There are 

other means to excite SPPs propagating in a given direction only, but they require a 

spatially extended source antenna with the length of many periods of the chain. 

For example, the smallest cell in a simple linear periodic chain consists of just 

one particle, and local direction-selective coupling in such chains is impossible. 

More generally, local direction-selective coupling is not possible in chains that are 

invariant under the reflection .Z → −Z. Indeed, if the chain has this property, the 

matrix .W(ω, q), in addition to the fundamental relation (31), is also symmetric, so 

that .W(ω, q) = WT (ω, q) = W(ω,−q). It is easy to see from (43) that, in this case, 

.d+ = d−. 
However, in a chain without the reflection symmetry, .W(ω, q) is not symmetric. 

We can exploit this property to achieve direction-selective coupling with a fairly 

good precision. Indeed, at a frequencies corresponding to positive dispersion, 

direction-selective coupling to SPPs propagating to the right of the reference cell 

(in the positive Z direction) occurs if .d+ /= 0 but .d− = 0. It can be seen from (68) 

that, within the precision of the approximation made, the dipole moments in the 

cells with .n < 0 are in this case zero. Similarly, the SPP would propagate to the left 

of the reference cell if .d− /= 0 but .d+ = 0. For negative dispersion, the directions 

are reversed. 

7.1 Directional Chain with Three Particles Per Cell 

There are several simple geometries of the reference cell that we can investigate for 

the purpose of providing examples. Here we illustrate how the direction-selective 

coupling can be achieved using the simple geometry illustrated in Fig. 2. Assume 

that the polarization is out-of-plane (along the Y -axis) and the particles are identical 

prolate spheroids whose major axis is aligned with Y . Figure 2 can be regarded as 

the “top view” of the waveguide. Further, we provide some analytical results for 

this geometry and illustrate the accuracy of the approximation that was made in 

evaluating the integral (59). 

Since the Cartesian components of the dipole moments along X and Z are zero 

in the considered geometry and only the Y -components enter the equations, the size 

of . W is effectively .3×3. The algebraic structure of .W(ω, q) is (regardless of . ω and q) 

.W =

⎡

⎣

w11 w12 w13

w21 w22 w23

w31 w32 w33

⎤

⎦ =

⎡

⎣

a b c

d a d

c b a

⎤

⎦ . (69)
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Fig. 2 Schematic illustration of the discrete waveguide for which direction-selective coupling is 

possible 

Here we accounted for the symmetry relations 

. w11 = w22 = w33 =: a ,

w12 = w32 =: b ,

w13 = w31 =: c ,

w21 = w23 =: d , (70) 

which are specific to the considered geometry. It is possible to prove that, for .q > k, 

a and c are real while .d = b∗. Therefore, . W is neither symmetric nor Hermitian. 

This fact will allow us to achieve direction-selective coupling. The matrix has three 

distinct eigenvalues 

.λ1 = a − c , λ2 = a + c −
√

c2 + 8bd

2
, λ3 = a + c +

√
c2 + 8bd

2
. (71) 

It can be seen that for .q > k all eigenvalues are real. The dual bases of right and left 

eigenvectors, . fi and . gi , are  

. f1 =
l

−1 0 1
lT

, f2 =
l

1
−
√

c2 + 8bd − c

2b
1

lT

, f3 =
l

1

√
c2 + 8bd − c

2b
1

lT

;

g1 =
l

−1 0 1
lT

, g2 =
l

1
−
√

c2 + 8bd − c

2d
1

lT

, g3 =
l

1

√
c2 + 8bd − c

2d
1

lT

.

(72) 

The orthogonality relations are, as expected, .fTi gj = Zi δij with
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.Z1 = 2 , Z2 = Z3 = 4+
c
l

c +
√

c2 + 8bd
l

2bd
. (73) 

In addition, we have the following relations 

.fT2 f3 = 2(1− d/b) , gT2 g3 = 2(1− b/d) . (74) 

We now have all the ingredients to build a source that couples only to the SPPs 

that propagate in a given direction. Assume that the pair .(ω, q) is on the dispersion 

curve for the 2-nd mode, in other words, satisfy the equation .s0(ω) = λ2(ω, q). 

Then we can apply the theory of Sect. 6.2. In particular, we have 

.d+ = f2 gT2 e , d− = g2 fT2 e , (75) 

where all quantities should evaluated at the selected dispersion point .(ω, q). If we  

choose .e = f3, we will have .d+ = 0 and .d− = 2(1 − d/b)g2 /= 0. If we choose 

.e = g3, then .d− = 0 and .d+ = 2(1 − b/d)f2 /= 0. Therefore, by using the right 

phase relations for the incident field, we can send the wave in either direction. 

7.2 Numerical Example 

To illustrate the effect numerically, we take the lattice period of the chain shown 

in Fig. 2 to be .h = 25.3 nm and the spheroid semi-axes . ax = az = 6.325 nm

and .ay = 42.166 . . . nm, so that the proportions are .ax = az = 0.25h = 0.15ay . 

The transverse width of the waveguide is .H = 2h = 50.6 nm and the shift of the 

central dipole is .δ = 0.25h = 6.325 nm. Particles are made of a Drude metal with 

.e0 = 5.0 and the wavelength at the plasma frequency in vacuum . λp = 2πc/ωp =
136.1 nm, which is characteristic of silver. The host medium is assumed to be a 

transparent dielectric with .eh = 2.5. These parameters and the geometry shown in 

Fig. 2 characterize the waveguide completely. 

We have solved the dispersion equations .s0(ω) = λi(ω, q) by the method of 

bisection. The dispersion curves for all three modes of the waveguide are shown in 

Fig. 3. The .i = 1 mode does not involve the central dipole (which is identically zero 

for this mode), and therefore, it is not very different from the mode of a simple linear 

chain made of the same spheroids. The dispersion curve for the latter case is shown 

by a thin red line for comparison. As the eigenvectors .f1 = g1 are orthogonal 

to all other eigenvectors, the .i = 1 mode cannot be used for direction-selective 

coupling. However, we can use to this end the .i = 2 and .i = 3 modes. Without 

loss of generality, we choose .i = 2. The point .(kh/π, qh/π) = (0.12, 0.5) belongs 

to the .i = 2 dispersion curve as is shown by the arrows in Fig. 3. Note that, at
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Fig. 3 Dispersion curves for 

the chain shown in Fig. 2 with 

the parameters described in 

the text.  The thin red  curve  

for a simple linear chain of 

the same spheroids and with 

the same period is shown  for  

comparison 

the normalized frequency .kh/π = 0.12, there exist two solutions to the dispersion 

equation, one with .i = 1 and another with .i = 2. However, the .i = 1 mode is 

antisymmetric and will not be excited. We can therefore focus on the .i = 2 mode 

alone. 

Having fixed a point on the dispersion curve .(kh/π, qh/π) = (0.12, 0.5), we  

have used numerical summation to compute the matrix elements .w11 = a, .w12 = b, 

.w13 = c, and .w21 = d . We then used (72) to find the eigenvectors. In this manner, 

we arrived at the numerical result 

. f3 =
l

1 −(1.37131+ 0.471286 i ) 1
lT

,

g3 =
l

1 −(1.37131− 0.471286 i ) 1
lT

. (76) 

The theory predicts that, if we use .e = f3 or .e = g3 at the normalized frequency 

.kh/π = 0.12, the resulting SPPs will propagate only in one direction from the 

excitation site. We show that this is indeed the case by finding the solution to 

the coupled-dipole equation (2) directly. We have solved the equations in a chain 

consisting of .8,000 unit cells with the small relaxation constant . γ /ωp = 0.0005

(smaller than in realistic metals). Only three dipoles in the central (reference) cell 

were illuminated, and the incident field amplitudes were given either by . f3 or by . g3
whose components are listed in (76). 

The results are shown in Fig. 4. When interpreting Fig. 4, it should be kept in 

mind that dispersion at .kh/π = 0.12 is negative. Therefore, when we take . e =
g3, we have  .d− = 0 and .d+ /= 0, but the excitation propagates to the left (in 

the negative Z direction). In any event, we have demonstrated that, by changing 

the phase relations of the localized source, we can send the excitation either to the 

right or to the left, with a high efficiency. We note that the quantities shown in 

the figure are linear in dipole moments; the energy-related quantities are quadratic. 

Therefore, the ratio of energy propagating to the left and right in any of the two 

excitation schemes illustrated in the figure is of the order of . 104, which quantifies 

the directionality of excitation.
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Fig. 4 Unidirectional 

propagation of SPPs in the 

chain shown in Fig. 2 at the 

dimensionless frequency 

.kh/π = 0.12 and for the 

Drude relaxation constant 

.γ /ωp = 0.0005. Only three 

dipoles in the reference cell 

.n = 0 are illuminated either 

with the amplitudes .e = f3 or 
.e = g3, as labeled. Only the 
central part of the chain 

consisting of .8,000 cells is 

shown. Dipole moments for 

.ν = 3 are identical to those 

with .ν = 1 and are not shown 

8 Discussion 

Several aspects of the aforementioned numerical demonstration require additional 

discussion. First, we have used an unrealistically small value of the Drude relaxation 

constant, .γ /ωp = 0.0005. This was done to demonstrate the accuracy of the 

approximation, which allowed us to evaluate the integral (59) analytically. In Fig. 5, 

we show the same computation with .γ /ωp = 0.002, which is the characteristic 

value for silver. It can be seen that in this, more realistic case, the SPP can still 

propagate unidirectionally over 100 unit cells (about .2.5µm for the parameters used 

in the simulation) without significant decay of the amplitude. 

In the geometry considered earlier (discrete waveguide made of relatively small 

particles embedded in infinite free space or a transparent dielectric), the material of 

the waveguide must be metal. Otherwise, the dispersion relation . s0(ω) = λi(ω, q)

does not have real-valued solutions. If we relax the assumptions that the particles 

are small and the surrounding space is infinite and homogeneous, it may be possible 

to use other materials such as transparent dielectrics. Familiar examples include 

optical fibers and dielectric slab waveguides. In the conventional implementation, 

these waveguides are not directional and therefore do not allow direction-selective 

coupling. However, we can give the dielectric waveguides a sense of direction by 

corrugating them (i.e., by introducing voids) so that the inversion symmetry is lost. 

It is therefore possible to reproduce the effect described earlier in waveguides with
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Fig. 5 Same as in Fig. 4 but 

for . γ /ωp = 0.002

very low losses, although numerical demonstration of this possibility is much harder 

as the dipole approximation is no longer applicable to such waveguides. 

In the metallic discrete waveguides described earlier, low losses may in fact be 

problematic. If the SPP reaches the physical end of the chain without significant 

decay, it may be reflected. Transient pulses can traverse the chain several times 

reflecting back and forth from the chain ends creating noise. In Fig. 6, we show  

that the problem can be ameliorated by introducing absorbing traps at the physical 

ends of the chain. One may think of these traps as detectors. The simulation of 

Fig. 6 was performed in a very long chain with zero absorption (.γ = 0) everywhere 

except at the chain ends where it increases exponentially from 0 to .0.05ωp over 

the length of 100 cells. It can be seen that reflections in this case are completely 

suppressed. 

Finally, it may seem that the excitation scheme used earlier where the source 

antenna illuminates only particles in the reference cell is artificial. A real antenna 

would illuminate all particles in the chain, albeit with a variable amplitude. The 

excitation scheme, however, is physical and in fact quite natural as we will now 

explain. Let us assume that the external fields .enν in (2) are localized according 

to (57) and therefore are zero for all .n /= 0. We can iterate (2) once by writing 

.dnν = αν(ω)enν + d'nν . (77)
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Fig. 6 Unidirectional SPPs 

in a chain of .8,000 unit cells 

made mostly of nonabsorbing 

particles but with absorbing 

traps at both ends. The Drude 

relaxation constant increases 

exponentially near the chain 

ends as .γ0 exp(−βm) where 

.γ0/ωp = 0.05, .β = 0.01 and 

m is the distance to the chain 

end in units of h. The  traps  

prevent SPP reflections that 

would occur otherwise 

In the adopted excitation scheme, we have .dnν = d'nν for all .n /= 0, the difference 

being limited to the reference cell. By substituting (77) into (2), we find that the 

dipole moments .d'nν satisfy 

.χ̂ν(ω)d'nν = e'nν +
7

mμ

(mμ) /=(nν)

Ĝ(rnν, rmμ; ω)d'mμ , (78) 

where 

.e'nν =
p

7

μ=1
(0μ)/=(nν)

Ĝ(rnν, r0μ; ω) α̂μ(ω)eμ . (79) 

Equation (78) is similar to (2) but has a different source term, . e'nν . This modified 

term is the field of an antenna consisting of the particles of the reference cell whose 

active (that is, externally controlled) dipole moments are .d
(source)
ν = α̂ν(ω)eν . Thus, 

for all dipoles except those of the reference cell, the localized excitation scheme 

considered earlier is equivalent to the excitation scheme in which the particles of 

the reference cell are themselves an active source of radiation (the antenna). This 

alternative excitation scheme is illustrated in Fig. 7. We conclude that the direction-

selective coupling can be achieved if the reference cell (located arbitrarily inside a 

chain) is an externally controlled active antenna.
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Fig. 7 Discrete waveguide similar to that of Fig. 2 but here the particles of the reference cell 

comprise an active antenna (the source of electromagnetic field) and have the externally controlled 

dipole moments .d
(source)
ν . This excitation scheme is equivalent to the localized excitation scheme 

considered elsewhere in this chapter for all cells with .n /= 0 provided that .d
(source)
ν = α̂ν(ω)eν . 

The relation must hold at the working frequency for a monochromatic excitation or point-wise in 

Fourier domain for transient excitation 

Appendix 

The Green’s tensor for Maxwell’s equations is singular. The singular part appears 

implicitly in the definition of the polarizability tensor .α̂ν(ω) but not in the coupled-

dipole equation (2) or the definitions of the dipole sum (8). We therefore focus on 

the regular part of the Green’s tensor, which gives the correct expression as long 

as .r /= r'. In terms of the scaled coordinates, the dimensionless Green’s tensor 

appearing in (2) is given by 

. Ĝ(r, r';ω) =
ll

ω2

ρ
+ iω

ρ2
− 1

ρ3

l

Î +
l

−ω2

ρ
− 3iω

ρ2
+ 3

ρ3

l

ρ ⊗ ρ

ρ2

l

eiωρ ,

(80) 

where .ρ = r− r' the symbol . ⊗ denotes tensor product, and . Î is the identity tensor. 

Note that .ρ = |ρ| = (ρ2
x + ρ2

y + ρ2
z )1/2. 

Let .α, β = x, y, z label the Cartesian components of vectors in a rectangular 

frame. Then we can rewrite the aforementioned expression in components as 

. Gαβ(r, r';ω) =
ll

ω2

ρ
+ iω

ρ2
− 1

ρ3

l

δαβ +
l

−ω2

ρ
− 3iω

ρ2
+ 3

ρ3

l

ραρβ

ρ2

l

eiωρ ,

(81)
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Survey and Perspectives on Line-Wave 

Electromagnetics 

Massimo Moccia , Marino Coppolaro , Giuseppe Castaldi , 

and Vincenzo Galdi 

1 Introduction and Background 

Electromagnetic waves, which generally extend in three dimensions, can exhibit an 
evanescent character when interacting with matter, resulting in their localization 
within a lower-dimensional space. A prominent example of this phenomenon is 
given by “surface waves” (SWs), which are tightly bound to a surface and propagate 
parallel to it [1] (see, e.g., Fig. 1a). These include surface plasmon polaritons, 
Bloch/Tamm waves, and Dyakonov waves, among others. The subwavelength con-
finement and field enhancement at the interface are crucial for various applications, 
such as chemical and biological sensing [2], nonlinear electromagnetics [3], and 
quantum electromagnetics [4]. 

This research area is experiencing renewed interest, spurred by the advent of 
artificial “metasurfaces” [ 5] and natural low-dimensional materials like graphene. 
These materials support SWs [6], whose propagation [7] and radiation [8] can be 
precisely controlled by locally tailoring surface properties. Additionally, they are 
easily integrable into planar microwave or photonic architectures. 

Recent theoretical [9] and experimental [10] studies have demonstrated a new 
type of SW that propagates along an abrupt discontinuity between metasurfaces 
characterized by dual (capacitive–inductive) surface reactances. These waves, 
known as “line waves” (LWs), retain the out-of-plane localization typical of conven-
tional SWs but also exhibit in-plane localization along the discontinuity (Fig. 1b). 
This unique feature allows them to transport energy along a one-dimensional (1D) 
track. 
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Fig. 1 (a) SWs at an interface between two media. (b) LW at a surface-impedance discontinuity 

Fig. 2 Numerically computed modal effective index of an LW propagating at an interface between 
two reactive metasurfaces with normalized surface reactances χ+ . and χ− ., for various parameter 
combinations. The inset shows the field map of a typical mode. Reprinted from Ref. [ 9] under CC 
BY 3.0 

LWs exhibit remarkable properties, including deeply subwavelength localization 
and field enhancement. As shown in Fig. 2, at a junction between two reactive 
impedance surfaces with opposite-signed reactances (capacitive–inductive), the 
effective mode index can approach infinity when the reactances are perfectly 
matched in magnitude but opposite in sign [9]. This singular behavior results
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Fig. 3 (a) Numerically computed field maps of an LW propagating at an interface between dual 
(capacitive–inductive) metasurfaces, with direction-dependent polarization (pseudo-spin states) 
excited by electric and magnetic Hertzian dipoles in phase (above) or out of phase (below). (b) 
Field map illustrating the robustness with respect to bending effects. (c), (d) Illustration of chiral 
coupling effects induced by circularly polarized sources (left- and right-handed, respectively). 
Reprinted (adapted) with permission from Ref. [10]. Copyright ©2017 American Physical Society 

Fig. 4 Illustration of a graphene-based reconfigurable LW platform at THz frequencies. ( a) 
Arbitrary-shaped pathways. (b) Delay lines with tunable phase-shift capabilities. (c) Magic-T  
coupler based on spin-filtered channels. Reprinted from Ref. [ 15] under CC BY-NC-ND 4.0 

from the idealized assumption of a perfect discontinuity in surface impedance 
and vanishes with a more realistic, continuous yet sharp transition. Despite this, 
very high localization remains achievable. Additionally, LWs are characterized 
by wide bandwidth, propagation-dependent polarization, robustness, and potential 
reconfigurability [ 9, 10]. 

These characteristics make LWs highly promising for various applications, 
including integrated photonics, high-frequency communications, and optical sens-
ing. Notably, LWs also exhibit topological-like robustness (see Fig. 3a, b) [10, 11], 
although there are some differences compared to topological photonics [12]. They 
also retain the spin-momentum locking properties typical of evanescent waves [13], 
which enable intriguing chiral-coupling effects (see Fig. 3c, d) that are of significant 
interest for quantum optics and valleytronics [14]. Furthermore, implementations 
at THz frequencies using gate-tunable graphene sheets have been proposed [15], 
suggesting exciting possibilities for dynamically reconfiguring wave pathways, 
confinement, and polarization states (see Fig. 4). 

More recently, new classes of LWs have been demonstrated in settings with non-
Hermitian (i.e., gain/loss) [16, 17] and anisotropic [18, 19] properties. However, due 
to the lack of simple analytical models, a clear and comprehensive phenomenologi-
cal understanding is still missing, along with a thorough taxonomy of the classes of 
materials that can support LWs.
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Experimentally, proof-of-concept demonstrations have been confined to the 
microwave range, where capacitive and inductive metasurfaces can be easily 
fabricated through suitable metallic texturing. Existing studies have primarily 
concentrated on waveguiding, field enhancement, topological properties, power 
routing/dividing, filtering, and coupling effects [ 10, 20–22]. However, no experi-
mental results are available yet for reconfigurable effects or higher frequencies. 

In this chapter, we offer a concise overview of the key developments in this 
emerging research area. Specifically, Sect. 2 addresses the modeling aspects from 
both analytical and numerical perspectives. Section 3 presents a selection of results, 
including potential material platforms, physical properties, and coupling effects. 
Finally, Sect. 4 provides concluding remarks, highlighting open challenges and 
suggesting potential research directions. 

2 Modeling Aspects 

2.1 Problem Formulation 

Referring to the geometry illustrated in Fig. 1b, we consider a planar metasurface 
situated in vacuum on the x − z. plane. In the simplest scenario, this metasurface is 
characterized by an isotropic impedance boundary condition [23]: 

.Et = Z(x)uy × H |y=0 , (1) 

with the subscript “ t .” denoting the tangential component, and uy . is a unit vector in 
the uy .-direction. We henceforth assume a time-harmonic dependence of exp(−iωt). 

and a piecewise continuous impedance distribution with a jump at the x = 0. 

interface: 

.Z(x) =

l

Z1, x < 0,

Z2, x > 0.
(2) 

Alternatively, surface properties can be described using different parameters. For 
instance, in the case of 2D materials such as graphene, the optical conductivity is 
commonly used. This conductivity is related to the surface impedance by [15]: 

.σ =
2

Z
, (3) 

where the factor of 2 accounts for the two-faced nature of a free-standing layer. 
As is well known, purely reactive impedance surfaces (i.e., with purely imag-

inary Z1,2 .) support SWs that exhibit either transverse-electric (TE) or transverse-
magnetic (TM) polarization, depending on whether the surface is capacitive or 
inductive, respectively [23]. These SWs propagate without attenuation within the
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x − z. plane and decay exponentially in the out-of-plane direction (i.e., along 
y). A surface-impedance discontinuity can induce additional in-plane localization, 
leading to field decay along the x-direction away from the interface. For instance, 
in a capacitive–inductive junction, this localization can be attributed to the TE/TM 
polarization mismatch occurring at the x = 0. interface [9, 10] (see also Fig. 2). 
However, this is not the only possible mechanism. Consequently, the resulting wave 
object is localized both in-plane and out-of-plane, concentrating around the line at 
x = 0., and is therefore referred to as an LW. 

From a mathematical perspective, the problem involves finding the source-free 
solutions to the boundary-value problem defined by Eqs. ( 1) and (2). Specifically, it 
entails identifying the combinations of Z1 . and Z2 . that lead to LW behavior. 

2.2 Analytical Approaches 

While the aforementioned boundary-value problem described can be seen as a 
lower-dimensional analog of the SW problem (Fig. 1a), its analytical treatment is 
significantly more complex. 

In [24], an exact analytical solution to the LW eigenproblem was derived by 
adapting a generalization of the Sommerfeld–Maliuzhinets method for scattering 
from impedance wedges [25, 26]. Alternatively, the Wiener–Hopf technique could 
also be applied [27]. These methods could, in principle, be extended to handle 
axially anisotropic impedances [28]. However, even in the simpler isotropic case, 
the resulting formulation is complex and lacks a clear physical parameterization. 

Several analytical approximations have been proposed for this problem. In 
particular, approximations in the electrostatic limit [29] are generally inadequate for 
deriving the dispersion equation. More recently, in [19], a nonlocal integral equation 
formulation for general tensor impedances was introduced. In certain cases, this 
formulation can be reasonably approximated by a local differential equation, where 
LWs serve as 1D analogs of surface plasmons bound to nonlocal metals. 

2.3 Numerical Approaches 

For a rigorous and comprehensive treatment of the problem, full-wave numerical 
approaches are generally required. 

In this context, general-purpose methods like finite element analysis [ 30] can 
naturally manage arbitrary (scalar and tensor) impedance combinations and multiple 
discontinuities. However, these methods still fall short in providing clear physical 
insights and are not well-suited for addressing critical aspects such as complex-
valued eigenmodes and nonlocal effects. 

In [31], a spectral method of moments was introduced for modeling LW 
waveguides. This approach not only offers computational efficiency and accuracy
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but also accommodates general anisotropy and spatial dispersion. Additionally, it 
can naturally handle both proper and improper eigenmodes, providing a physically 
insightful framework for studying LWs. 

The numerical studies presented here are conducted using the finite-element 
commercial software package COMSOL Multiphysics [30]. 

3 Selected Results 

In the following sections, we review recent findings involving material combinations 
beyond the conventional capacitive–inductive case. These include non-Hermitian 
platforms with spatial modulations of gain and loss, as well as anisotropic materials. 
Additionally, we explore peculiar phenomena related to LW propagation, such as 
leakage and coupling effects, both in-plane and out-of-plane. 

3.1 Non-Hermitian Junctions 

In [16], a new type of LW was demonstrated at a planar surface-impedance discon-
tinuity characterized by the same reactance but with oppositely signed resistance. 
Referring to the geometry in Fig. 1b, this configuration involves choosing: 

.Z1 = −R + iX, Z2 = R + iX, (4) 

which represents a transition from gain to loss. The underlying localization mecha-
nism relies on the parity-time ( PT.) symmetry condition: 

.Z(x) = −Z∗(x). (5) 

Originally introduced in non-Hermitian quantum mechanics [32], this concept 
has been extended to optics [33] and other branches of wave physics [34]. In this 
context, the two halves of the metasurface individually support attenuated ( x >

0.) and amplified (x < 0.) SWs, with TM (X < 0.) or TE (  X > 0.) polarization. 
The resistance discontinuity creates an additional in-plane localization mechanism, 
resulting in an LW that propagates along the interface at x = 0. with a real-valued 
propagation constant kz ., experiencing neither attenuation nor amplification. This 
phenomenon can be seen as a 1D analog of the SWs supported at interfaces between 
PT.-symmetric metamaterial slabs [35, 36]. 

Unlike conventional LWs in capacitive–inductive metasurface junctions [9, 10], 
these non-Hermitian variants can also exhibit an out-of-plane “leaky” (radiative) 
regime for specific values of the complex surface impedance. As shown in Fig. 5a, 
the transition from the bound (kz > k .) to the leaky [Re(kz) < k .] regimes occurs at 
the unit-circle |Z|/η = |Z̄| = 1., where k = ω/c = 2π/λ. represents the vacuum
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Fig. 5 Non-Hermitian LWs. (a) Partition of the Z̄ . complex plane separating the bound (purple-
shaded) and leaky (orange-shaded) modes. (b) Effective index kz/k . of bound modes, computed 
analytically (solid curves) and numerically (markers), as a function of the gain/loss parameter 
R̄ ., for representative values of the normalized (capacitive) reactance X̄ .. Reprinted (adapted) with 
permission from Ref. [16]. Copyright ©2020 American Chemical Society 

wavenumber, and c, λ., and η . denote the corresponding wavespeed, wavelength, 
and intrinsic impedance, respectively. Here and henceforth, the overbar denotes 
normalization with respect to the vacuum intrinsic impedance η .. 

For the bound regime, Fig. 5b illustrates the characteristic behaviors of the 
modal effective index as a function of the surface-impedance parameters, com-
paring the analytic predictions with full-wave (finite-element) computations [ 30]. 
The more realistic scenario of a smooth (though steep) surface-impedance pro-
file was also numerically investigated [ 16]. Figure 6 illustrates representative 
modal-field distributions, revealing the hybrid character (with generally nonzero 
z-components) similar to conventional LWs [9, 10], but also highlighting some 
important differences. Notably, there is a transverse energy flow (Fig. 6c) that results 
in anomalous near-field forces [ 37], potentially useful for microfluidics and micro-
optomechanical systems. 

Figure 7 demonstrates the out-of-plane leakage effect. As illustrated in Fig. 7a, 
in this case, the out-of-plane confinement is lost, allowing the field to couple with 
the radiation continuum. As a result, Fig. 7b shows that propagation along the 
z-direction is attenuated as power progressively leaks out-of-plane. The far-field 
radiation pattern in Fig. 7c is consistent with leaky-wave radiation [38]. 

Similar to the conventional case, non-Hermitian LWs have demonstrated chiral-
coupling properties with respect to circularly polarized sources [16]; however, spin-
filtered waveguiding is generally not achievable. 

Additionally, gain–loss imbalanced configurations have been explored [ 16] to  
achieve lasing (or coherent perfect absorption) and in-plane leakage effects (see also
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Fig. 6 Non-Hermitian LWs. 
(a), (b), (c) Numerically 
computed distributions 
(z-components as false-color 
maps, x and y components as 
vector plots) for electric and 
magnetic fields, and 
powerflux, respectively, for a 
bound mode (R̄ = X̄ = 0.5.; 
|Z̄| < 1.). Reprinted (adapted) 
with permission from Ref. 
[16]. Copyright ©2020 
American Chemical Society

 

Fig. 7 Non-Hermitian LWs. (a), (b) Numerically computed in-plane (y = 0.01λ). and out-of-
plane (x = 0). electric-field magnitude maps in false-color scale, respectively, with R̄ = 1.1. and 
X̄ = 0.1(|Z̄| > 1)., showing the out-of-plane leakage effect. (c) Corresponding radiation pattern. 
The field is excited by a y-directed elementary electric dipole placed atx = z = 0. and y = 0.02λ.. 
Reprinted (adapted) with permission from Ref. [16]. Copyright ©2020 American Chemical Society
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Sect. 3.3). Potential THz implementations based on photoexcited graphene have also 
been proposed [16], with optical pumping offering an intriguing reconfigurability 
mechanism. At high frequencies, this mechanism could be more feasible than a 
capacitive–inductive transition. 

The reader is also referred to [17] for additional results on non-Hermitian LWs. 

3.2 Isotropic–Anisotropic Junctions 

In [18], a junction between an isotropic metasurface and an anisotropic, reciprocal 
one was investigated, as schematically illustrated in Fig. 8. The isotropic half is 
characterized by a surface conductivity σi ., while the anisotropic half is described 
by parallel and orthogonal surface conductivities σll . and σ⊥ ., respectively. The 
optical axis of the anisotropic metasurface can be rotated by an angle φ .. In the  
in-plane (x, z). reference system, this metasurface can be equivalently represented 
by a symmetric tensor σa . with components: 

.σxx = σ⊥ cos2 φ + σll sin2 φ, . (6a) 

σzz = σll cos2 φ + σ⊥ sin2 φ, . (6b) 

σxz = σzx = (σ⊥ − σll) cos φ sin φ. (6c) 

Fig. 8 Schematic of a planar junction between an isotropic metasurface and an anisotropic, 
reciprocal one with slanted optical axis. The wavy arrows depict a GLW that propagates 
unattenuated along the interface x = 0. and exhibits an oscillatory decay both in-plane and out-
of-plane in the anisotropic halfplane x > 0.. Reprinted with permission from Ref. [18]. Copyright 
©2023 American Chemical Society
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Fig. 9 Isotropic–anisotropic 
junction. (a) Numerically 
computed field-map of a 
GLW eigenmode for 
σi = i0.055η−1

., 
σ⊥ = −i0.011η−1

., 
σll = i0.041η−1

., φ = 27◦
.. 

(b), (c) Corresponding cuts 
(blue-solid) at y = 0.001λ. 

and x = 0.0054λ., 
respectively, compared with 
theoretical predictions 
(red-dashed) obtained from 
the study of the iso-frequency 
contours. Reprinted (adapted) 
with permission from Ref. 
[18]. Copyright ©2023 
American Chemical Society 

Unlike previous cases, no analytical solutions are currently available for this con-
figuration, necessitating the use of full-wave numerical simulations [ 30]. However, 
useful physical insights can be gained by analytically studying the SWs supported 
by the anisotropic half, assuming that it extends infinitely. As detailed in [ 18], 
this configuration can support conventional LWs for either elliptic or hyperbolic 
anisotropy if the optical axis is aligned with the interface (φ = 0, π/2.). Conversely, 
for a slanted optical axis, a unique form of LW emerges, propagating without 
attenuation along the interface (i.e., z-direction), while decaying with an oscillatory 
behavior both in-plane (i.e., along x) and out-of-plane (i.e., along y). These modes 
can be viewed as the 1D equivalent of the “ghost waves” [39–41] and “ghost surface 
polaritons” [42] observed at interfaces between isotropic and biaxially anisotropic 
lossless media. These nonuniform waves exhibit complex-valued wavevectors (with 
nonzero real and imaginary parts) even in the absence of material losses, thus 
blending characteristics of both propagating and evanescent waves. This hybrid 
nature may have significant applications in various fields, such as nonlinear optics 
and sub-diffraction imaging. 

Figure 9 illustrates a numerically computed ghost-LW (GLW) mode supported 
by a suitably designed inductive-hyperbolic junction, with anisotropic parameters 
compatible with those reported in the literature for a thin layer of α .-MoO 3 . [43]. 
This mode demonstrates deeply sub-wavelength localization and oscillatory decay 
within the anisotropic half. It has been shown that the spectral region admitting 
GLWs is critically dependent on the rotation angle of the optical axis [18]. 

For additional insights, the reader is referred to [19], which provides an approx-
imate analytic approach to studying anisotropic junctions. Notably, the oscillatory 
decay associated with GLWs has been explained through an effective gauge field 
induced by the surface anisotropy.
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Fig. 10 Schematic 
illustration of the flatland 
leaky-wave mechanism. 
Reprinted (adapted) from 
Ref. [44] under CC BY 4.0 

3.3 Flatland Leakage 

In [44], a novel LW radiation mechanism was explored, inspired by conventional 
leaky waves but restricted entirely to in-plane propagation. This differs from the 
mechanism discussed in Sect. 3.1 (see Fig. 7), which features instead a fast LW 
radiating out-of-plane. 

Let us consider a purely reactive metasurface (in the x-z plane, embedded in 
vacuum), characterized by a surface impedance Z = iX . (Fig. 10). As previously 
noted, depending on the sign of X, this metasurface can support an SW with either 
TE or TM polarization and an in-plane propagation constant given by [23]: 

.kt =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

k

l

1 +

l

X

η

l2

, X < 0 (TM),

k

ll

1 +

l η

X

l2
, X > 0 (TE).

(7) 

Additionally, let us assume a wave propagating along the z-direction with a 
complex-valued propagation constant kz = βz + iαz ., where βz, αz > 0. and k <

βz < kt .. In this scenario, the wave remains confined out-of-plane (exponentially 
decaying along the y-direction) and exhibits a complex-valued propagation constant 

along the x-direction, kx =

ll

k2
t − k2

z = βx − iαx ., with αx > 0.. This represents the 

“flatland” analog of conventional leaky-wave scenarios [ 38], where the radiation is 
entirely confined in the x − z. plane. Despite the seemingly unphysical exponential 
growth along the x-direction, this wavefield can effectively model in-plane radia-
tion, with the parameters βz . and αz . controlling the radiation direction θ0 . (measured 
from the z-axis) and the beamwidth, respectively. Specifically, in the regime αz <<

βz ., the wave radiates a directive SW beam at an angle θ0 ≈ arccos(βz/kt ).. This is  
formally analogous to observations in conventional leaky-wave scenarios [38], with 
the SW propagation constant replacing the vacuum one. This concept is also related 
to the recently observed phenomenon of 2D Cherenkov radiation [45].
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Fig. 11 (a) Schematic of non-Hermitian configuration supporting flat leaky waves. ( b) Numeri-
cally computed in-plane field map (electric-field magnitude, at y = 0.01λ.), for R̄ = X̄ = 0.5.. The  
field is excited by a y-directed elementary electric dipole placed atx = z = 0., y = 0.02λ.. The  
plot is restricted to the lossless region x < 0.. Reprinted (adapted) with permission from Ref. [16]. 
Copyright ©2020 American Chemical Society 

The question then arises: how can a wavefield with these characteristics be 
physically realized? A straightforward example was provided in [16] within a 
non-Hermitian LW scenario. As illustrated schematically in Fig. 11a, a planar 
junction between a lossy reactive metasurface and a lossless one can support an 
LW propagating along the interface, characterized by a complex-valued propagation 
constant with the desired properties. Figure 11b shows an example derived from 
the PT.-symmetric configuration in Fig. 6 by switching off the gain (i.e., Z̄1 =

i0.5, Z̄2 = 0.5+i0.5.). As observed, two directive beams are obtained in the lossless 
region, with symmetry due to the bidirectional propagation induced by the dipolar 
excitation considered. However, relying on losses is suboptimal for efficiency. Thus, 
alternative configurations featuring purely reactive components can be conceived to 
achieve similar effects. 

In an alternative configuration, illustrated in Fig. 12a, a planar junction between 
two semi-infinite dual (capacitive-inductive) metasurfaces with surface impedances 
Z1 . and Z3 ., respectively, separated by a strip of width d and surface impedance 
Z2 . (of same type as Z3 .), can support this type of phenomenon. Referring to 
[44] for more details, the surface impedances Z1 . and Z2 . are selected such that 
the corresponding junction supports an LW that decays both in-plane and out-
of-plane as d → ∞.. However, for finite values of d, the LW leaks power into 
the adjacent semi-infinite region of surface impedance Z3 ., radiating a directive 
beam. Remarkably, this mechanism enables the control and possible scanning of the 
beam direction via gate-tunable 2D materials such as graphene. Figure 12b–d show 
numerically computed results (near-field in-plane maps) for three representative 
configurations, achieved by varying the surface impedance Z1 .. These results exhibit 
the typical characteristics of leaky-wave radiation, with different beam directions 
observed for each configuration. 

Alternative configurations supporting flat leaky waves, which do not necessarily 
rely on LWs, can also be conceived [44]. 

The reader is also referred to [46] for an experimental study at microwave 
frequencies.
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Fig. 12 (a) Schematic of fully reactive configuration supporting flat leaky waves. ( b), (c), (d) 
Numerically computed field maps (electric-field intensity, at y = 0.001λ.), for d = 0.2λ., Z̄2 =

−i0.067., Z̄3 = −i2., and Z̄1 = i4., i6.67., and  i100, respectively. The field is excited by a y-
directed elementary electric dipole placed at y = 0.1λ. and the center of the semicircle shown. The 
plots are restricted to the region with surface impedance Z3 .. Reprinted (adapted) from Ref. [44] 
under CC BY 4.0
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3.4 Coupling Effects 

When two surface-impedance junctions supporting LWs are placed in proximity, 
intriguing coupling effects may arise, analogous to coupled surface plasmon 
polaritons [48]. Within this context, it is important to distinguish between in-plane 
and out-of-plane scenarios. 

In-plane LW coupling effects have been explored in the context of non-Hermitian 
configurations with double planar, PT.-symmetric junctions [47], as illustrated in 
Fig. 13. Specifically, as schematized in the inset, the surface impedance profile is 
given by: 

.Z(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Z1 = −R + iX1, x < −d/2,

Z2 = −iX2, −d/2 < x < d/2,

Z3 = −Z∗
1 = R + iX1, x > d/2.

(8) 

Each capacitive–inductive junction supports an LW, either damped or amplified, and 
the coupling strength can be adjusted by varying the width d of the central lossless 
region. As shown in Fig. 14a,b, the modal indices exhibit a spontaneous symmetry 
breaking pattern typical of non-Hermitian systems [33]. This entails a transition 
between a “symmetric” regime, characterized by real-valued branches, and a “bro-
ken” regime, marked by complex-conjugate solutions. These regions are separated 
by an “exceptional point” (EP), at a critical distance dEP ., where two eigenstates 
coalesce, a phenomenon of significant interest for applications such as lasing and 
sensing [49]. As illustrated in Fig. 14c,d, the critical EP distance dEP . can be fine-
tuned by adjusting the surface resistance and reactances, offering opportunities for 
dynamic modulation and the exploration of various paths in parameter space around 
the EP, especially using gate-tunable platforms like graphene. Notably, the surface-
impedance parameters required for these configurations are achievable with models 
of photoexcited graphene metasurfaces at THz frequencies [47]. 

Fig. 13 Schematic of 
in-plane coupling in a 
PT.-symmetric configuration 
(see inset). Reprinted with 
permission from Ref. [47]. 
Copyright ©2021 American 
Physical Society
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Fig. 14 In-plane coupling of LWs. (a), (b) Real and imaginary part, respectively, of numerically 
computed modal effective index k̄z = kz/k ., as a function of d/λ., for X̄1 = 0.7., X̄2 = 0.2η., 
R̄ = 0.1η.; the symmetric and broken phases are highlighted with different color shades, and the 
dashed line identifies the EP. ( c) Critical electrical separation between the metasurface interfaces to 
obtain an EP (  dEP /λ.) as a function of the normalized gain or loss parameter R̄ ., for X̄1 = 0.7. and 
X̄2 = 0.2.. (d) Same as panel (c) (with R̄ = 0.1.) but as a function of X̄1 . (purple squares, bottom 
axis) for X̄2 = 0.2., and of X̄2 . (green diamonds, top axis) for X̄1 = 0.7.. Reprinted (adapted) with 
permission from Ref. [47]. Copyright ©2021 American Physical Society 

In [50], the out-of-plane coupling of LWs was investigated within a general 
parallel-plate waveguide configuration. Specific examples of this type of coupling 
were also explored in [17, 22, 51]. 

The geometry of interest is illustrated in Fig. 15. We consider two planar meta-
surface junctions with surface impedances Z1 . and Z2 ., and Z3 . and Z4 ., respectively, 
arranged within a parallel-plate waveguide with spacing h in vacuum. Each junction 
supports an LW propagating along the impedance discontinuity (z-direction) while 
decaying both out-of-plane (along y) and in-plane (along x). Given the localized 
nature of these waves, they interact weakly when the spacing h is large relative to 
the wavelength. However, their interaction becomes significant when h << λ.. 

Interestingly, the configuration in Fig. 15 can also be viewed as a junction 
between two parallel-plate waveguides formed by pairs of metasurfaces (i.e., Z1 .
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Fig. 15 Schematic of 
out-of-plane coupling of LWs 
in a parallel-plate waveguide 
configuration. Reprinted with 
permission from Ref. [50]. 
Copyright ©2024 Materials 
Research Society 

and Z3 ., and Z3 . and Z4 .). These structures have been recently studied in isolation for 
both purely reactive and PT.-symmetric scenarios [52]. 

We first consider a purely reactive (capacitive-inductive) configuration that is 
symmetric along the y-direction, with Z̄1 = Z̄3 = i . and Z̄2 = Z̄4 = −i0.1.. 
Figure 16a shows the numerically computed modal effective index kz/k . as a 
function of the electrical spacing h/λ.. As shown, there are two real-valued modal 
branches, corresponding to modes with even and odd symmetry. For large values 
of h, the coupling effects are negligible, and the modal indices asymptotically 
approach kz/k ≈ 1.89., which corresponds to the values for the isolated LWs in 
each junction [10]. As h decreases, the interaction between the LWs intensifies, 
causing the two modal branches to diverge. In the limit h → 0., one branch 
approaches a constant value of kz/k ≈ 3.06., corresponding to the modal index 
of an LW supported by a single junction formed by the combined metasurfaces, 
where the effective impedances are Z1 ll Z3 = Z1/2. and Z2 ll Z4 = Z2/2.. The  
divergence of the upper modal branch represents an unphysical behavior, similar 
to what was observed in Sect. 3.1, and arises from the idealized assumption of 
discontinuous surface impedances. This artifact disappears when considering a 
smooth (albeit sharp) impedance transition. Despite this, the modal index for closely 
spaced junctions can still achieve significantly larger values compared to the isolated 
junctions, leading to highly localized modes with potential applications in nonlinear 
optics, subwavelength sensing, and near-field imaging. 

Next, we examine a non-Hermitian configuration comprising two identical 
capacitive, PT.-symmetric impedance junctions, with parameters Z̄1 = Z̄3 =

(−0.5 + i0.5). (gain) and Z̄2 = Z̄4 = (0.5 + i0.5). (loss), which are selected 
to satisfy the bound-mode condition (see Sect. 3.1) for the isolated junctions. A 
notable aspect of this non-Hermitian setup is its potential to exhibit EPs [49], 
similar to the in-plane coupling scenario discussed in Fig. 14. As illustrated in 
Fig. 16b,c, EPs can be induced by introducing asymmetry, i.e., displacing one of the 
junctions along the x-direction by an amount A. while maintaining a fixed spacing 
h. This perturbation results in modal indices with complex values, which exhibit a 
spontaneous symmetry-breaking pattern, transitioning from a symmetric phase to a 
broken phase through an EP. Also in this configuration, the properties of the EP can 
be adjusted by varying the electrical thickness of the waveguide and by tuning the 
surface impedances, allowing for dynamic control.
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Fig. 16 Out-of-plane coupling of LWs. (a) Numerically computed modal indices kz/k . as a 
function of electrical thickness h/λ. for a symmetric configuration (see inset) with Z̄1 = Z̄3 = i . 

and Z̄2 = Z̄4 = −i0.1.; note the semi-log scale. (b), (c) Numerically computed modal indices 
(real and imaginary part, respectively) as a function of electrical displacement A/λ. for an PT.-
symmetric configuration with Z̄1 = Z̄3 = (−0.5+ i0.5)., Z̄2 = Z̄4 = (0.5+ i0.5)., and h = 0.31λ.. 
Reprinted (adapted) with permission from Ref. [50]. Copyright ©2024 Materials Research Society 

4 Conclusions and Perspectives 

In summary, this overview has highlighted recent advancements and emerging 
trends in the field of LW electromagnetics. 

LWs represent a highly intriguing research domain with the potential to revolu-
tionize various applications, ranging from sensing and communications to quantum 
computing. While LWs can be intuitively regarded as 1D analogs of SWs, their 
theoretical and experimental study presents significant complexities, necessitating 
the development of new analytical and numerical tools. Current analytical methods, 
which often rely on complex special functions, do not facilitate a straightforward 
physical interpretation of wave phenomena. Consequently, the material combina-
tions that can support LWs and the extent to which their operational frequency can 
be advanced remain open questions. 

Experimental studies to date are limited to microwave frequencies and under-
score the need for carefully engineered coupling mechanisms. Theoretical and 
numerical investigations in the THz range offer preliminary insights, but extending 
these findings to optical frequencies remains uncertain. 

In conclusion, despite the significant interest and potential of LWs, the field is 
still in its early stages, with many possibilities yet to be explored. This presents 
substantial opportunities for speculative research and emphasizes the need for 
experimental validation. Furthermore, translating these concepts to other areas 
of wave physics, such as mechanics, where SWs are well understood but a 1D 
counterpart remains elusive, could offer exciting new avenues for investigation.
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Oddly Shaped Inclusions: Depolarization 

Dyadics and Homogenization 

Tom G. Mackay and Akhlesh Lakhtakia 

1 Introduction 

This chapter concerns the theory of a homogenized composite medium (HCM) 
comprising a host medium impregnated with randomly dispersed particulate inclu-
sions. Crucially, the inclusions must be sufficiently small relative to the wavelengths 
involved so that the composite medium effectively behaves as a homogeneous 
medium [1–4]. HCMs are of considerable technological importance, especially 
with nanocomposite materials being increasingly developed for optical applications 
[5]. Notably, by means of judicious design, HCMs may exhibit properties not 
exhibited by their component mediums [6]. A straightforward example is furnished 
by anisotropic HCMs, which can arise from isotropic component mediums provided 
that the inclusions are shaped appropriately [7]. More generally, the notion of 
homogenization is of fundamental importance in electromagnetics as it underpins 
the transition from microscopic to macroscopic viewpoints [8, 9] 

The constitutive parameters of HCMs are estimated using homogenization 
formalisms. A wide variety of these formalisms have been developed over many 
years [1, 4]. One of the most widely used formalisms is the Maxwell Garnett 
formalism [10]. The popularity of this formalism may be attributed, in part at least, 
to its computational simplicity and to its intimate connection with the Hashin– 
Shtrikman bounds [11]. In common with most other homogenization formalisms, 
this formalism adopts depolarization dyadics to represent the scattering responses 
of the inclusions [4]. As described in detail in Sect. 2.1, the depolarization dyadic 
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is the integrated singularity of the dyadic Green function for the host medium 
[12, 13]. Until very recently, closed-form expressions for depolarization dyadics 
were available only for a rather restrictive range of inclusion shapes [14–20], for 
examples, spherical, spheroidal, ellipsoidal, cubic, and cylindrical. More complex 
inclusion shapes could be accommodated only using numerical integration methods 
[21, 22]. Consequently, homogenization formalisms generally have been investi-
gated for inclusions with simple shapes. 

Within the past year, the range of inclusion shapes that can be readily catered 
for in homogenization formalisms was broadened by the derivation of closed-
form expressions for depolarization dyadics for truncated spheres and truncated 
spheroids, and this methodology was extended to truncated ellipsoids [23]. Also, 
these depolarization dyadics were adopted in an implementation of the Maxwell 
Garnett formalism to estimate the relative permittivity parameters of HCMs com-
prising truncated spheres and spheroids as inclusions [24]. This implementation was 
extended to inclusions with truncated ellipsoidal shapes, with the corresponding 
depolarization dyadics being evaluated numerically. In this chapter, an overview of 
these recent developments to accommodate oddly shaped inclusions is provided. 

In Sect. 2, a summary of the theoretical underpinnings of depolarization dyadics, 
polarizability density dyadics, and the Maxwell Garnett homogenization formalism 
is provided. No novelty is claimed for this background theory—it is presented for 
completeness for the reader’s convenience. Then, in Sect. 3, recently derived closed-
form expressions for depolarization dyadics for truncated spheres and spheroids 
are presented and illustrated; the extension of the methodology to truncated 
ellipsoidal inclusions is also presented. In addition, the Maxwell Garnett formalism 
is presented for HCMs based on inclusions shaped as truncated spheres, spheroids, 
and ellipsoids. Finally, in Sect. 3, numerical results are presented to illuminate 
the relationship between the anisotropy of the HCM and inclusion shape. A brief 
discussion is provided in the closing Sect. 4. 

In the notation adopted, vectors are boldface; dyadics [4, 13] are double 
underlined; ε0 . and μ0 . are the free-space permittivity and permeability, respectively; 
and I = ûxûx + ûyûy + ûzûz . is the identity dyadic with ûx ., ûy ., and ûz . being the 
unit vectors aligned with the coordinate axes of the Cartesian coordinate system 
(x, y, z).. Angular frequency is denoted by ω ., k0 = ω

√
ε0μ0 . denotes the free-space 

wavenumber, and an exp(−iωt). dependence on time t is implicit. 

2 Background Theory 

2.1 Depolarization Dyadics and Polarizability Density Dyadics 

Suppose that a closed surface Sin . encloses the electrically small region Vin . and 
separates it from the unbounded region Vh ., as shown in Fig. 1. The unit outward 
normal ûn(r). is unambiguously identified at every point r ∈ Sin .; if present, 
wedges and vertexes on Sin . can be rounded off slightly to hew to this restriction.
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Fig. 1 Schematic of a finite 
region Vin . separated from the 
external region Vh . by the 
surface Sin . 

A homogeneous dielectric medium of relative permittivity εin(ω). fills Vin ., while a 
homogeneous dielectric medium of relative permittivity εh(ω) = n2h(ω). fills Vh .. 

The region Vin . is irradiated by a monochromatic electromagnetic field phasor 
Es(r, ω).. The source of this field source is confined to the bounded region Vs ⊂ Vh . 

far from Vin .. Accordingly, at any location r /∈ Vs . the electric field phasor is given 
exactly by Lakhtakia [25], Chew [26], and Sancer et al. [27] as  

. E(r, ω) = Es(r, ω) + k20 [εin(ω) − εh(ω)]

lll

Vin

l

Gh(r, r
';ω)• E(r', ω)

l

d3r' ,

r /∈ Vs , (1) 

with 

.Gh(r, r
';ω) =

l

I + ∇∇
k20 εh(ω)

l

exp
l

ik0nh(ω)|r − r'|
l

4π |r − r'| (2) 

being the dyadic Green function for the medium that fills Vh .. In particular, the 
electric field phasor at r = ro ∈ Vin . is given by Eq. (1) as  

. E(ro, ω) = Es(ro, ω)+k20 [εin(ω)−εh(ω)]

lll

Vin

l

Gh(ro, r
';ω)•E(r', ω)

l

d3r' ,

ro ∈ Vin , (3) 

provided that ro /∈ Sin .. 
The integral on the right side of Eq. (3) needs to be treated carefully owing to the 

term |ro − r'|−3
. in its integrand [28]. Adding the term GP(ro, r

';ω)•E(ro, ω). to the 
integrand and subtracting the same term from the integrand yields [29, 30] 

. E(ro, ω) = Es(ro, ω) + k20 [εin(ω) − εh(ω)]

×
lll

Vin

l

Gh(ro, r
';ω)•E(r', ω) − GP(ro, r

';ω)•E(ro, ω)
l

d3r'

+k20 [εin(ω)−εh(ω)]

llll

Vin

GP(ro, r
';ω) d3r'

l

•E(ro, ω) , ro ∈ Vin,

(4)
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with 

.GP(r, r
';ω) = 1

k20 εh(ω)
∇∇ 1

4π |r − r'| . (5) 

By means of the identity∇∇
l

|r − r'|−1
l

= −∇∇ ' l|r − r'|−1
l

. together with the 
Gauss theorem, the second integral on the right side of Eq. (4) simplifies, allowing 
the electric field phasor to be recast as [25, 29] 

. E(ro, ω) = Es(ro, ω) + k20

× [εin(ω) − εh(ω)]

l

M(ro, ω) − 1

k20 εh(ω)
L(ro)•E(ro, ω)

l

, ro ∈ Vin , (6) 

wherein the vector 

. M(ro, ω) =
lll

Vin

l

Gh(ro, r
';ω)•E(r', ω) − GP(ro, r

';ω)•E(ro, ω)
l

d3r' ,

(7) 
and the depolarization dyadic 

.L(ro) = 1

4π

ll

Sin

ûn(r
')

r' − ro

|r' − ro|3
d2r' (8) 

emerge [31, 32]. 
Next we focus on the volume integral M(ro, ω). defined on the right side of 

Eq. (7). The singularities of Gh(ro, r
';ω). and GP(ro, r

';ω). that arise in the limit 

r' → ro . balance each other in such a way that the integrand is integrable provided 
that real constants a1 > 0. and a2 > 0. exist such that 

.|ûj
• [E(r, ω) − E(ro, ω)] | ≤ a1|r − ro|a2 (9) 

for all r ∈ Vin . and j ∈ {x, y, z}. [29, 30]. This is the Hölder continuity condition. 
It is common practice [25, 29, 30] to make the approximation E(r', ω) ~

E(ro, ω). for all r' ∈ Vin ., which is reasonable as long as Vin . is sufficiently small in 
relation to the wavelengths in both Vin . and Vh .. This step has been computationally 
justified [29] and follows the work of Maxwell [33]. Consequently,M(ro, ω). can be 
expressed as M(ro, ω)•E(ro, ω). and Eq. (6) reduces to 

. E(ro, ω) ~ Es(ro, ω) + k20 [εin(ω) − εh(ω)]

×
l

M(ro, ω) − 1

k20 εh(ω)
L(ro)

l

•E(ro, ω) , ro ∈ Vin . (10) 

The notion of M(ro, ω). is attributable to Lorenz [34, 35].
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If Vin . is sufficiently small [25, 36], it also reasonable to assume that the volume 
integral represented by M(ro, ω). is negligible compared to L(ro)/k20 εh . [25, 31, 37]. 
Hence, the electric field phasor is taken to be 

.E(ro, ω) ~
l

I + εin(ω) − εh(ω)

εh(ω)
L(ro)

l−1
•Es(ro, ω) , ro ∈ Vin . (11) 

Electromagnetically, the small region Vin . may be represented by as an electric 
dipole moment [25] 

.p(ω) = vin ε0 [εin(ω) − εh(ω)]E(ro, ω) (12) 

located at ro ., with vin . being the volume of Vin .. This electric dipole moment 
is regarded as the source of the field scattered into the external region Vh .. By  
combining Eqs. (11) and (12), the electric dipole moment may be expressed as 

.p(ω) = vin a(ω)•Es(ro, ω) , (13) 

wherein the polarizability density dyadic 

.a(ω) ~ ε0 [εin(ω) − εh(ω)]

l

I + εin(ω) − εh(ω)

εh(ω)
L(ro)

l−1

(14) 

is introduced. 
It should be emphasized that Eq. (14) delivers an approximation of the polar-

izability density dyadic, for the following reasons. Firstly, in deriving Eq. (11), 
M(ro, ω). is taken to be negligible in relation to L(ro)/k20 εh ., but that is true strictu 
sensu when Vin . is vanishingly small, regardless of the shape of Vin .. Secondly, 
the Hölder continuity condition applies best within the largest ellipsoid contained 
in Vin . that is centered at ro . [33]. If the shape of Vin . is not ellipsoidal, then the 
electric field phasor within Vin . that is outside the largest inscribed ellipsoid is 
only approximately accounted for. This means that ro . needs to be judiciously 
selected [23]. Notwithstanding this second source of approximation, Eq. (14) has 
been widely implemented for non-ellipsoidal inclusion shapes such cubes [38, 39], 
rectangular parallelopipeds [40], and circular cylinders of finite height [31]. 

2.2 Maxwell Garnett Formalism 

In Sect. 2.1, a single inclusion embedded in a host medium was considered. Now 
we turn to a composite medium consisting of a collection of inclusions randomly 
distributed in a host medium. All inclusions have the same shape and orientation, 
and all are electrically small. The composite medium fills all space Vall .. The  volume
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fraction of the composite medium filled by the inclusions is denoted by fin ., while 
Nin . is the number density of inclusions. Thus, each inclusion’s volume is fin/Nin .. 
As in Sect. 2.1, the inclusion medium has relative permittivity scalar εin(ω)., and the 
host medium εh(ω).. 

In compliance with the Maxwell curl postulates, the electric field phasor in Vall . 

satisfies 

.∇ × [∇ × E(r, ω)] − k20 εh(ω)E(r, ω) = iωμ0J(r, ω) , r ∈ Vall. (15) 

If r. lies inside an inclusion, then the electric current density phasor J(r, ω) /= 0., 
otherwise J(r, ω) = 0. [25, 41]. Suppose now that we assume the inclusions are 
sufficiently small in relation to wavelength that the composite medium may be 
regarded as being effectively homogeneous with relative permittivity dyadic εeff(ω).. 
The constitutive relation 

.D(r, ω) = ε0εh(ω)E(r, ω) + Pxs(r, ω) = ε0ε
eff(ω)•E(r, ω) , (16) 

characterizes the homogenized composite medium (HCM). Herein D(r, ω). is the 
electric displacement phasor and Pxs(r, ω). is the excess polarization representing 
the homogenized distribution of the inclusion medium inside the HCM. 

In the Maxwell Garnett formalism, the equivalent source term J(r, ω). in Eq. (15) 
becomes in the homogenized regime 

.Javg(r, ω) = −iωPxs(r, ω), (17) 

which represents the spatial average of J(r, ω). in an electrically small neighborhood 
of r. called the Lorentzian cavity [42]. Consequently, the electric field phasor in the 
HCM is given by the integral equation 

. E(r, ω) = Ecf(r, ω) + ω2μ0

lll

Vall

Gh(r, r
';ω)•Pxs(r

', ω) d3r' , r ∈ Vall ,

(18) 
where Ecf(r, ω). is the corresponding complementary function, which need not be 
explicitly specified. 

Suppose that the region Vl . centered at r. is the Lorentzian cavity. By convention, 
Vl . is taken to be spherical. The local electric field phasor 

.Eloc(r, ω) = Ecf(r, ω) + ω2μ0

lll

Vall−Vl

Gh(r, r
';ω)•Pxs(r

', ω) d3r' (19) 

is introduced to represent the electric field phasor present at r. provided that the 
excess polarization is null valued in Vl .. Equations (18) and (19) collectively deliver 

.E(r, ω) = Eloc(r, ω) + ω2μ0

lll

Vl

Gh(r, r
';ω)•Pxs(r

', ω) d3r' . (20)
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In order to proceed, the standard practice is to assume that the excess polarization is 
spatially uniform inside the Lorentzian cavity [42]. Consequently, Eq. (20) reduces 
to 

.E(r, ω) ~ Eloc(r, ω) − 1

3ε0εh(ω)
Pxs(r, ω) . (21) 

A key step in the Maxwell Garnett formalism is to take Pxs = Ninp. and allow 
Es(r, ω). to play the part of Eloc(r, ω).. Thus, Eq. (13) yields 

.Pxs(r, ω) = fin a(ω)•Eloc(r, ω) . (22) 

Now Eloc(r, ω). can be eliminated from Eq. (22) by means of Eq. (21), which leads 
to 

.Pxs(r, ω) ~ fin a(ω)•

l

I − 1

3ε0εh(ω)
fin a(ω)

l−1
•E(r, ω). (23) 

Finally, the Maxwell Garnett estimate 

.εMG(ω) = εh(ω) I + fin

ε0
a(ω)•

l

I − 1

3ε0εh(ω)
fin a(ω)

l−1

(24) 

of the relative permittivity dyadic εeff (ω). emerges, courtesy of Eqs. (16) and (23). 
A couple of comments on Eq. (24) are in order here. Firstly, a particular choice 

of a(ω). is not really essential for the Maxwell Garnett formalism. The Mossotti– 
Clausius expression [35] for the polarizability scalar of an electrically small, 
isotropic, dielectric sphere was adopted by Maxwell Garnett himself [10] and others 
[43]; but even for that simple inclusion, other expressions may be implemented 
[34, 35, 44, 45]. Secondly, generalizations of Eq. (24) for εMG

. have been developed 
for inclusions of more than one type as well as for anisotropic (and bianisotropic) 
inclusion and host mediums [4, 46]. 

3 Numerical Results 

In this section, some recent developments pertaining to depolarization dyadics 
for truncated spheres, spheroids, and ellipsoids, and the implementation of the 
corresponding Maxwell Garnett homogenization formalism, are described and 
illustrated with numerical calculations.
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3.1 Preliminaries 

It follows from 

.trace
l

L(ro)
l

= 1

4π

ll

Sin

ûn(r
')•

l

r' − ro

|r' − ro|3
l

d2r' (25) 

that 

.trace
l

L(ro)
l

= 1, (26) 

which is useful to verify numerical treatments for truncated ellipsoids. 
An outstanding matter is the following: Where inside the inclusion region Vin . 

should ro . be taken for the integration that delivers the depolarization dyadic in 
Eq. (8)? For a spherical inclusion region, L(ro) = (1/3)I . for any ro ∈ Vin . [32]. 
But for less symmetric inclusion shapes, L(ro). is sensitive to the choice of ro ∈ Vin . 

[31, 43]. In order that the Hölder continuity condition (9) holds over the largest 
portion of Vin ., ro . must be taken as the center of the largest sphere that can be 
inscribed inside Vin .. With this understanding, henceforth we write L. in lieu ofL(ro).. 

In the following, all truncation planes are taken to be parallel to the xy plane, 
without loss of generality. Consequently, L. and εMG

. acquire the diagonal forms 

.
L = Lx ûxûx + Ly ûyûy + Lz ûzûz

εMG = εMG
x ûxûx + εMG

y ûyûy + εMG
z ûzûz

l

. (27) 

When the inclusions are truncated spheres and truncated spheroids, Lx = Ly ≡ Lt . 

and εMG
x = εMG

y ≡ εMG
t .. Therefore, closed-form expressions for Lz . need not be 

explicitly stated because Lz = 1 − 2Lt . for truncated spheres and spheroids, and 
Lz = 1 − Lx − Ly . for truncated ellipsoids, courtesy of Eq. (26). 

In order to illustrate the estimates generated by the Maxwell Garnett homoge-
nization formalism, the following representative values were chosen: εh = 2+0.5i ., 
εin = 3.5+0.9i ., and fin = 0.3.. Note that fin ~> 0.3. is inconsistent with the Maxwell 
Garnett formalism [1, 4]. 

3.2 Spherical Inclusion Geometry 

The inclusion shape is based on truncations of the unit sphere, centered at the 
coordinate origin. 

3.2.1 Double-Truncated Sphere 

The inclusion shape is the middle part of the sphere that is truncated below by the 
plane z = −η . and truncated above by the plane z = η ., where 0 < η < 1.. The
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Fig. 2 Schematic of a 
double-truncated sphere 

Fig. 3 Plot of Lt . versus 
η ∈ (0, 1). for the 
double-truncated spherical 
inclusion 
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largest sphere that can be inscribed inside the double-truncated sphere has radius η .. 
A schematic representation is provided in Fig. 2. 

The integration in Eq. (8) yields 

.Lt =
l

3 − η2
l

η

6
. (28) 

The depolarization factor Lt . is plotted against η . in Fig. 3. In keeping with standard 
results for a spherical inclusion [32], Lt → 0. in the limit η → 0., while Lt → 1/3. 
in the limit η → 1.. 

The real and imaginary parts of the relative permittivity parameters εMG
t . and 

εMG
z . of the HCM are plotted against η . in Fig. 4. The HCM exhibits a monotonically 
decreasing degree of anisotropy as η . increases and becomes isotropic in the limit 
η → 1.. 

3.2.2 Truncated Sphere 

The inclusion shape is the upper part of the sphere that is truncated below by the 
plane z = 1 − 2η ., where 0 < η < 1.. The largest sphere that can be inscribed inside 
the truncated sphere has radius η .. A schematic representation is provided in Fig. 5.
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a b  

Fig. 4 Plots of real and imaginary parts of εMG
t . and εMG

z . versus η ∈ (0, 1). for double-truncated 
spherical inclusion 

Fig. 5 Schematic of a 
truncated sphere 

Fig. 6 Plot of Lt . and versus 
η ∈ (0, 1). for the truncated 
spherical inclusion 

The integration in Eq. (8) yields 

. Lt = η

6 (1 − η)3
√

(4 − 3η) η

l

6 −
l

3 − 3η + η2
l

l

(4 − 3η) η

−η [11 − 3η (3 − η)]
l

. (29) 

This expression of Lt . is plotted against η . in Fig. 6. The plot in Fig. 6 is similar to 
that in Fig. 3. In particular, as in Fig. 3, Lt → 0. in the limit η → 0., while Lt → 1/3. 
in the limit η → 1..
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a b  

Fig. 7 Plots of real and imaginary parts of εMG
t . and εMG

z .versus η ∈ (0, 1). for truncated spherical 
inclusion 

The real and imaginary parts of the relative permittivity parameters εMG
t . and 

εMG
z . of the HCM are plotted against η . in Fig. 7. The plots in Fig. 7 are similar 
to those in Fig. 4. In particular, the degree of anisotropy exhibited by the HCM 
decreases monotonically as η . increases and in the limit η → 1. the HCM becomes 
isotropic. 

3.3 Spheroidal Inclusion Geometry 

The inclusion shape is based on truncations of the spheroid 

.
x2 + y2

α2
+ z2 ≤ 1, (30) 

centered at the coordinate origin with equatorial radius α > 0.. 

3.3.1 Double-Truncated Spheroid 

The inclusion shape is the middle part of the spheroid that is truncated below by the 
plane z = −η . and truncated above by the plane z = η ., where 0 < η < 1.. The  
largest sphere that can be inscribed inside the double-truncated spheroid has radius 
α . for η > α . and radius η . for η < α .. A schematic representation is provided in 
Fig. 8. 

The integration in Eq. (8) yields 

.Lt =
−η

l

α2−1
α2−η2(α2−1)

+ α2 tan−1

l

η

l

α2−1
α2−η2(α2−1)

l

2
l

α2 − 1
l3/2

. (31)
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Fig. 8 Schematic of a 
double-truncated spheroid 
with η > α . (left) and η < α . 

(right) 
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Fig. 9 Plot of Lt . versus α ∈ (0, 4]. and η ∈ (0, 1). for the double-truncated spheroidal inclusion 

Figure 9 presents a plot of Lt . against α . and η .. For all values of η ., Lt . decreases 
monotonically as α . increases. On the other hand, for all values of α ., Lt . increases 
monotonically as η . increases. As η → 0., the limiting value Lt = 0. is attained. As 
η → 1., the limiting value 

.Lt = 1

2

l

1

1 − α2
+ α2 tan

−1
√

α2 − 1
l

α2 − 1
l3/2

ll

, (32)
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a b  

c d  

Fig. 10 Plots of real and imaginary parts of εMG
t . and εMG

z . versus α ∈ (0, 4]. and η ∈ (0, 1). for 
double-truncated spheroidal inclusions 

is attained, which is a known result for spheroidal inclusions [15]. The limiting value 
Lt = 1/2. is attained as α → 0.; and the limiting value Lt = 0. is attained in the limit 
α → ∞.. 

The real and imaginary parts of the relative permittivity parameters εMG
t . and 

εMG
z . of the HCM are plotted against α . and η . in Fig. 10. As  α . increases, Re

l

εMG
t

l

. 

increases monotonically, and Re
l

εMG
z

l

. decreases monotonically, for all values of 

η .. As  κ . increases, Re
l

εMG
t

l

. decreases monotonically, and Re
l

εMG
z

l

. increases 

monotonically, for all values of α .. The plots for Im
l

εMG
t

l

. and Im
l

εMG
z

l

. are 

qualitatively similar to those for Re
l

εMG
t

l

. and Re
l

εMG
z

l

., respectively. Apart from 

at the very smallest values of α ., the values of εMG
t . and εMG

z . are insensitive to α . in 
the limit η → 0.. 

3.3.2 Hemispheroid 

The inclusion shape is the upper half of the spheroid, lying between the plane z = 0. 
and the plane z = 1.. The largest sphere that can be inscribed inside the hemispheroid 
has radius η ., with η = α

√
1 − α2 ∈ (0, 1/2). for α < 1/

√
2. while η = 1/2. for 

α > 1/
√
2.. A schematic representation is provided in Fig. 11.
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a b  

Fig. 11 Schematic of a hemispheroid with α < 1/
√
2. (left) and α > 1/

√
2. (right) 

The integration in Eq. (8) yields 

. Lt = 1

4νγ 4

l

1 + ν + α2
l

α
l

α +
l

2 − α2
l

− ν − 3
l

− (αγ )2
l

2 − α2 log

l

1 − α2 + γ
l

(1 − α)

α (ν − γ )

l

(33) 

for α < 1/
√
2. and 

. Lt =
3
l

1 +
√
1 + 4α2

l

+ α2
l

10 − 8
√
1 + 4α2

l

− 8α4

4γ 2
l

3 + 8α2 − 16α4
l

+
α2 log

1 − 2α2 + γ√
1 + 3α2 − 4α4 − 1

4γ 3
(34) 

for α > 1/
√
2., wherein 

.
ν =

√
2 − 3α2 + α4

γ =
√
1 − α2

l

. (35)
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Fig. 12 Plot of Lt . versus 
α ∈ (0, 5]. for the 
hemispheroidal inclusion 

a b  

Fig. 13 Plots of real and imaginary parts of εMG
t . and εMG

z . versus α ∈ (0, 5). for hemispheroidal 
inclusions 

In Fig. 12, the depolarization factor Lt . is plotted against α .. The  value of  Lt . 

decreases monotonically as α . increases. The limiting value Lt =
l

2 +
√
2
l

/8. is 

attained as α → 0.. The limiting value Lt = 0. is attained as α → ∞.. The  value  
of Lt . coincides with that of Lz . at α = 0.5818.. The results for the hemisphere are 
recovered at α = 1.. 

The real and imaginary parts of the relative permittivity parameters εMG
t . and 

εMG
z . of the HCM are plotted against α . in Fig. 13. The  value of Re

l

εMG
z

l

. decreases 

monotonically and the value of Re
l

εMG
t

l

. increases monotonically as α . increases. 

The graphs of Im
l

εMG
t

l

. and Im
l

εMG
z

l

. are qualitatively similar to those of 

Re
l

εMG
t

l

. and Re
l

εMG
z

l

. At α = 0.5818., εMG
t = εMG

z .; i.e., the HCM is isotropic. 
The more α . increases or decreases from 0.5818, the greater is the degree of 
anisotropy that the HCM exhibits. At α = 1., the results for hemispherical inclusions 
are recovered. 

3.4 Ellipsoidal Inclusion Geometry 

The inclusion shape is based on truncations of the ellipsoid 

.
x2

α2
+ y2

β2
+ z2 ≤ 1, (36) 

centered at the coordinate origin with semi-axis lengths α > 0. and β > 0..
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3.4.1 Double-Truncated Ellipsoid 

The inclusion shape is the middle part of the ellipsoid that is truncated below by the 
plane z = −η . and truncated above by the plane z = η ., where 0 < η < 1.. Numerical 
integration techniques are needed to evaluate L. per Eq. (8). 

Plots of Lx .and Ly .against α .and β .are displayed in Fig. 14 for η ∈ {0.2, 0.4, 0.8}.. 
The depolarization factors Lx . and Ly . vary smoothly as α . and β . increase from 0 to 
3; Lx . is most sensitive to α . at small values of α . while Ly . is most sensitive to β . at 
small values of β .. In general, the values of the depolarization factors Lx . and Ly . are 
much less sensitive to variations in η . than they are to variations in either α . or β .. 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.2 

0.4 

0.6 

0.8 

0.2 

0.4 

0.6 

0.8 

0.2 

0.4 

0.6 

0.8 

0.2 

0.4 

0.6 

0.8 

a b 

c d 

e f 

Fig. 14 Plots of Lx . and Ly . versus α ∈ (0, 3]. and β ∈ (0, 3]. for the double-truncated ellipsoidal 
inclusion with η ∈ {0.2, 0.4, 0.8}.
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Fig. 15 Plots of real and imaginary parts of εMG
x ., εMG

y ., and εMG
z .versus α ∈ (0, 3]. and β ∈ (0, 3). 

for double-truncated ellipsoidal inclusions with η = 0.4. 

The real and imaginary parts of the relative permittivity parameters εMG
x ., εMG

y ., 

and εMG
z . of the HCM are plotted against α . and β . in Fig. 15 for η = 0.4.. Both  

Re
l

εMG
x

l

. and Im
l

εMG
x

l

. are especially sensitive to variations in α . at low values 

of α .; both Re
l

εMG
y

l

. and Im
l

εMG
y

l

. are especially sensitive to variations in β . 

at low values of β .; and both Re
l

εMG
z

l

. and Im
l

εMG
z

l

. are especially sensitive to 
variations in α . and β . at low values of α . and β .. Additional numerical studies (not 
shown graphically here) revealed that εMG

x ., εMG
y ., and εMG

z . are generally relatively 
insensitive to variations in η ∈ (0, 1)..
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Fig. 16 Plots of Lx . and Ly . versus α ∈ (0, 3]. and β ∈ (0, 3]. for the hemi-ellipsoidal inclusion 

3.4.2 Hemi-Ellipsoid 

The inclusion shape is the upper half of the ellipsoid that lies between the plane 
z = 0. and the plane z = 1.. The radius of the largest sphere inscribed inside the 
hemi-ellipsoid is given as 

.η =

⎧

⎨

⎩

1/2, for α > 1/
√
2, β > 1/

√
2

α
√
1 − α2 for α ≤ 1/

√
2, α < β

β
l

1 − β2 for β ≤ 1/
√
2, β < α

. (37) 

Numerical integration techniques are needed to evaluate L. per Eq. (8). 
Plots of Lx . and Ly . against α . and β . are displayed in Fig. 16. The depolarization 

factors Lx . and Ly . vary smoothly as α . and β . increase from 0 to 3; specifically, Lx . 

decreases markedly as α . increases, and Ly . decreases markedly as β . increases. 
The real and imaginary parts of the relative permittivity parameters εMG

x ., εMG
y ., 

and εMG
z . of the HCM are plotted against α . and β . in Fig. 17. As both α . and β . 

vary, there are smooth variations in the real and imaginary parts of each of εMG
x ., 

εMG
y ., and εMG

z .. Specifically, Re
l

εMG
x

l

. is particularly sensitive to variations in α . 

at small values of α ., Re
l

εMG
y

l

. is particularly sensitive to variations in β . at small 

values of β ., and Re
l

εMG
z

l

. is particularly sensitive to variations in both α . and β . 

at small values of α . and β .. The plots for Im
l

εMG
x

l

., Im
l

εMG
y

l

., and Im
l

εMG
z

l

. 

are qualitatively similar to those plots for Re
l

εMG
x

l

., Re
l

εMG
y

l

., and Re
l

εMG
z

l

., 

respectively.
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Fig. 17 Plots of real and imaginary parts of εMG
x ., εMG

y ., and εMG
z .versus α ∈ (0, 3]. and β ∈ (0, 3]. 

for hemi-ellipsoidal inclusions 

4 Discussion 

Depolarization dyadics are fundamental to theories of homogenization and scat-
tering from electrically small particles. Hitherto, closed-form expressions for 
depolarization dyadics had been developed only for relatively simple inclusion 
shapes such as ellipsoids and cubes, but now the range of inclusion shapes has been 
broadened to include truncated spheres and truncated spheroids [23]. Furthermore, 
the formalism has been extended to truncated ellipsoidal inclusions, but in this case, 
numerical methods are needed to evaluate the depolarization dyadics.
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These newly developed depolarization dyadics for truncated spheres, spheroids, 
and ellipsoids [23] have been incorporated [24] into the Maxwell Garnett formalism 
to represent inclusions embedded in an isotropic dielectric host medium. The 
applicability of this homogenization formalism has thus been substantially extended 
to HCMs comprising inclusions of more realistic shapes. 

Through numerical investigations based on physically realistic constitutive 
parameter values, the anisotropy of the resulting HCM has been related to the 
geometry of the inclusions. To be specific, the degree of anisotropy exhibited by the 
HCM became greater as the shape of the inclusions deviated more from spherical. 

Lastly, the Maxwell Garnett formalism has been well-established for many years 
for HCMs arising from inclusions shaped as spheres, spheroids, and ellipsoids [1]. 
An important foundation for this formalism is the assumption that the inclusions 
are sufficiently small that the electromagnetic field is spatially uniform within 
each inclusion [42]. This assumption is also taken to hold for the oddly shaped 
inclusions described herein. Physically, this assumption is reasonable provided that 
the inclusions are sufficiently small and provided that their shapes do not deviate too 
much from those of non-truncated spheres, spheroids, and ellipsoids. However, as 
with all homogenization formalisms, only through comparison with experimentally 
measured data can the usefulness of this recently developed implementation of the 
Maxwell Garnett formalism be truly assessed. 
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1 Introduction 

Light manipulation devices require materials that respond to an applied external 

stimulus such as electric, magnetic, thermal, mechanical, or optical fields. The 

speed, modulation range, depth, high light throughput, cost, and energy saving of 

photonic devices are competing parameters that can lead to bottlenecks in numerous 

critical applications, such as acquiring images at many wavelengths or polarization 

states during the heartbeat cycle or from the eye retina before eye movement 

or blinking, or for improving the yield of production in the nanoelectronics 

industry, or again in experimental cosmology where fast surveying of galaxies is 

required to search for extra-terrestrial life. One prominent emerging field combining 

nanotechnology with photonics is the field of photonic metamaterials; however, fast 

tunable devices exhibiting broadband, large modulation depth, high light throughput 

at a low cost, ease of scaling, and compact manner are still lacking. Since these are 

competing parameters, the existing solutions usually customize the device to a very 

limited application. 
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Photonic metamaterials (PMMs) offer many possibilities to resolve such prob-

lems [1, 2]. They are defined as artificial optical materials composed of subwave-

length metallic or dielectric building blocks with properties determined mainly 

by their subwavelength nature rather than their chemical composition. These 

building blocks or “photonic atoms” (PAs) are structural elements densely packed 

into an effective material such that the operating wavelength is ideally much 

larger (typically an order of magnitude or more) than the diameter of the PAs. 

Highly unusual material properties become accessible, e.g., a negative refraction 

index that has recently acquired operation wavelengths in the infrared and visible 

ranges. Tunability of the properties of PMMs broadens their usability for fast 

light modulation, such as tunable filters, tunable focus flat lenses, spatial light 

modulators, and frequency reconfigurable antennae. Liquid crystals (LCs) possess 

strong electro-optic effects and can penetrate nanogaps, thus they can be ideal for 

tunable PMMs. Some preliminary works have demonstrated applications of PMMs 

using LCs infiltrating the PMM or as a layer adjacent to the PMM. Others have used 

thermotropic phase change materials, thermochromic materials, semiconductors, 

electromechanical, magneto-optic, and electro-optic materials. However, until now 

the majority of the demonstrated tunable PMM device concepts are limited either 

in their size, switching speed, tunability range, and spectral bandwidth, and usually, 

they require complex fabrication techniques, thus their practicality is limited. 

Active control of the wavelength, polarization, or phase, of light—either tempo-

rally, spatially, or spatiotemporally—over a wide spectral range, wide field of view, 

in an achromatic manner, that is fast, has a high light throughput and small form 

factor, as well as low cost is always in demand for many important applications. 

These range from spectral imaging to optical communications, from quantum and 

optical computing to tunable lasers, from augmented reality devices to autonomous 

cars, and many other emerging applications [3–5]. Progress is ongoing in light 

manipulation methods and devices due to their utmost importance in many fields. 

Nonetheless, the existing solutions, often suffer either from low speed, narrow 

dynamic range, wide uncontrolled bandwidth, or low light throughput, and the 

majority are bulky and expensive to manufacture. Narrow resonances of micro-

and nanostructures tuning can allow fast response and high sensitivity; however, 

the dynamic range is usually small [6–8]. A device combining all these quality 

parameters does not yet exist. Here, our main objective is to review recent advances 

in photonic metamaterial (PMM) structures for light modulation, sensing, and 

energy saving devices. The chapter is divided into three main sections, Sect. 2 is 

on PMMs for light modulation, Sect. 3 is on PMMs for energy saving, while Sect. 

4 is on PMMs for sensing applications. 

2 PMMs for Light Modulation 

Photonic metamaterials (PMMs) show great potential for such light manipulation 

devices [9–13]. When the PMM is a 2D surface, in what is called a metasurface,
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Photonic 

Meta 

Materials 

(PMMs) 

Electromechanical Tuning

> Resonance shift up to 400 nm

> Modulation depth up to 40%

> SWIR range (1.1-1.6 μm)

> Electrical voltage 3V

> τ down to 500 ns 

Optical Non-Linearity 

Tuning

> Resonance shift up to 15 nm

> Modulation depth up to 80%

> THz range (~ 2250 nm)

> Pumping fluence of 10mJ/cm2

> τ down to picoseconds  

Thermochromic Tuning

> Resonance shift up to 200 nm

> Modulation depth up to 33%

> SWIR range 

> Temperature increase >320K

> τ < 10 ms  

Magne�c Tuning

> Resonance shift up to 2.2 GHz

> Up to 100% modulation depth

> GHz and THz

> Changing magnetic bias by <1 kOe 

Tuning with Liquid Crystals

> Most commonly tuning 

method

> Varying tuning range from few 

nanometers up to hundreds 

of nanometers.

> Up to 100% modula�on depth

> Tuned by small voltages

> Response time depends on  

LC mode and device thickness

> Response time can reach 

nanoseconds 

Fig. 1 PMMs tuning methods and their main characteristics 

it can be prepared easily with well-established lithography fabrication processes as 

compared to the 3D PMM. By making the PMM, or part of it, from responsive 

material such as electrooptic, magneto-optic, thermoscopic, photosensitive, elas-

tomeric, acousto-optic, electromechanical, or nonlinear optical material (see Fig. 

1), it is possible to tune the properties of the PMM as exemplified by many works 

over the last decade [14–18]. In what follows, we present an overview of works 

done on tunable photonic metamaterials with an emphasis on tunability with liquid 

crystals. 

2.1 Overview of Tunable PMMs 

Electromechanical (EMC) EMC-driven metasurface operating in the Short-wave 

infrared (SWIR) was demonstrated by Ou et al. [19]. It was fabricated by focused
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ion beam milling on a 50-nm-thick Si3N4 membrane. Under ~3 V, the transmittance 

becomes modulated, however, the depth was only 5%. Tunable plasmonic lattice 

grating patterned on a flexible and stretchable PDMS substrate was shown by Chen 

et.al [20]. It showed a response under external strain varying between 0% and 10%, 

giving almost a 40% modulation depth in reflectivity by external strain change from 

1.6% to 3.5%. The surface plasmon resonance shifted approximately 80 nm in the 

visible at ~780 nm under the same strain variation. A focal-length tunable lens was 

demonstrated by Arbabi et al. [21], using a pair of metalenses based on the high-

contrast dielectric arrays. One metalens is on a fixed glass substrate, whereas the 

other on a movable Si3N4 membrane. The doublet shifted the focal length up to 

80 µm. Foland et al. presented a 2D deformable GMR strain sensor by embedding 

TiO2 of 210 nm radius in PDMS [22]. The height of the pillars was 200 nm, and 

they were arranged in arrays of 480 nm period in the x-axis, and 560 nm in the 

y-axis. Two resonance peaks were obtained, one of wavelength around 775 nm for 

the short-period axis and the second of around 850 nm for the long-period axis. The 

resonant wavelength shifted along the long-period axis with a 4.8 nm/%ε sensitivity 

over a range of 5% strain. 

Optical Nonlinearity Using the optical nonlinear Kerr effect of ITO, Zhu et.al 

[23]. demonstrated tunable transparency plasmonic metasurface of gold on ITO. An 

optical transparency window shift to the short-wavelength direction in the SWIR 

range was observed. Optically tunable metasurface was demonstrated by Kim et.al 

[24]. based on the structure Ag-Al2O3-Ag, called metal–insulator-metal (MIM) 

nanocavity with a 70 nm-thick Ga: ZnO layer as an active layer. It showed fast 

switching in the sub-picosecond range with 80% depth at laser pumping fluence 

of 10 mJ/cm2. The cavity resonance red-shifted by 15 nm in the SWIR range 

near the Epsilon-near-zero (ENZ) wavelength. At the ENZ condition, the field 

becomes drastically enhanced, and this is used to enhance optical nonlinear effects. 

A polarization switch was demonstrated using plasmonic metasurface and isomeric 

ethyl-red polymer [25] based on a 100-nm-thick gold periodic array of L-shaped 

slots on a 500-µm-thick fused quartz substrate and ~ 300 nm ethyl-red polymer top 

layer. By irradiating green laser (532 nm) the isomeric state of ethyl-red changed 

from trans to cis state, which caused the refractive index to decrease. This induced 

coupling between the resonant plasmonic modes and the isomeric state, and the 

resulting polarization change revealed 80% modulation depth at 6 Hz. Visible light 

fifth harmonic generation was observed [26] from the heterostructure of the Indium-

doped CdO layer on gold coated with MgO top layer due to the field enhancement 

at the interface with MgO, although the ENZ condition occurs at the wavelength of 

2250 nm. 

Thermochromic Thermal tuning of metamaterials was done using thermochromic 

phase change materials, such as germanium-antimony-tellurium (GST) or VO2. All-

optical bidirectional metasurface based on the GST was demonstrated [27] using  

a 15 nm-thick GST layer sandwiched between SiO2 and ZnS/SiO2 layers. Also, 

the same group [28] demonstrated 10% reflectivity modulation depth in the UV 

and visible using patterned GST heterostructure with ZnS/SiO2. Plasmonic 50-nm-
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thick Au trenches support plasmonic resonance and enhanced photo-absorption for 

a temperature change of GST. As the phase of the GST layer changes from the 

crystalline to the amorphous phase, the transmission at SWIR spectra rose from 20% 

to 40%. Electrically controllable VO2 metasurface was demonstrated [29] with the 

VO2 laterally sandwiched by structured gold electrodes and the voltage pulse train 

changes the phase of VO2 between amorphous and crystalline phases. A modulation 

depth of 33% at the SWIR spectrum was observed with a response time < 10 msec. 

Thermal tuning of VO2-TiO2 multilayer metamaterial was demonstrated [30] due to 

the dispersion relation change from the elliptic form to the hyperbolic form as the 

temperature increases over the critical temperature of VO2 around 325 K. Two types 

of VO2 metasurfaces were produced by us showing operation as smart windows 

with improved performance, one by femtosecond pulsed laser [31] and the other by 

oblique angle deposition technique [32]. 

Magnetic Tuning MTM properties with the magnetic field has been done in many 

works, particularly in the GHz and sub-THz regimes, since in these ranges the 

metamaterial structure may be considered as a combination of electrical compo-

nents, such as varactor diodes, capacitors, and inductors with a magnetic response, 

for instance, the split ring resonator structure [33]. Shifts of SRR resonances were 

reported [34–36]. Caratenuto et al. [37] demonstrated, theoretically and analytically, 

the magnetic field-induced spectral radiative properties of a metamaterial composed 

of Indium Antimonide (InSb) line-gratings on Tungsten (W) film in terahertz. 

They showed that the InSb grating has single narrowband emissivity of unity in 

terahertz, and by applying magnetic field, the light matter interactions are modified 

by broadening the resonant wavelength by 25 µm while still maintaining the near-

unity resonance as shown in Fig. 2. 

Tuning MTMs with Liquid Crystals Some materials change their refractive index 

when an electric field is applied to them. Some are nonlinear materials following the 

Fig. 2 InSb-W grating 

structure under external 

magnetic fields of varying 

magnitudes. Field-induced 

curves are color filled to 

highlight the broadband red 

or blue emissivity shifts 

brought on by the magnetic 

field. Arrows denote the 

direction of the dominant 

resonance shift from the 

original narrowband peak to 

longer (red) or shorter (blue) 

wavelengths. The figure was 

reproduced from [37] with 

permission from OPTICA 

Publishing Group
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Kerr effect and others show linear variation with the applied electric field following 

the Pockels effect. The origin of these effects is electronic and therefore they exhibit 

a fast response; however, these effects are relatively weak, so a large interaction 

region with the light is required from millimeters to centimeters and large voltages 

are needed. Liquid crystals (LCs) are composed of anisotropic molecules, usually 

rod-shaped, and therefore can rotate under the application of small voltage. It is 

a strong effect showing birefringence modulation typically in the range 0.1–0.28; 

however, larger values up to 0.4 were also demonstrated in response to 1–10 V 

and only a few microns thick layer is required to generate 100% modulation. With 

resonant structures, a very thin LC layer and small index modulation is required to 

tune the resonance and obtain a large modulation depth. LCs possess a wide variety 

of EO effects depending on their structure determined by the material, the molecular 

alignment geometry of the device, and the anchoring strength of the molecules on 

the surfaces. They can flow and fill nanogaps exhibiting strong thermo-optic and 

magneto-optic responses, therefore they are ideal for tuning metamaterials. Hence, 

by combining the two fields, a wide range of new devices with high potential can 

be generated. Recent review articles [14, 15, 32, 38–42] on tunable MTMs, contain 

up-to-date information on tuning using liquid crystals, ref. 37 is dedicated to this 

topic. A short overview is presented below. 

Of all the possible tuning methods of liquid crystals, electrical tuning is the most 

convenient as it requires low voltages and negligible current. Among the first LC 

tunable MTM devices was the one analyzed by Khoo et al. [43], consisting of 

nanospheres immersed in the nematic liquid crystal. LiTaO3 was used as the core 

material for this purpose, and their effective index properties were calculated using 

the Maxwell Garnet mixing rule. By using this combination, it was shown that at 

the frequency of 108 THz, the effective index of the material changes from +1 to  

−1 as the effective permittivity varied from 2 to 4. Electromagnetically induced 

transparency (EIT) and absorption resonant structure were demonstrated with the 

LC layer to shift the resonance up to 0.5THz [44, 45] with modulation depths of 

18.3 dB and 10.5 dB based on different combinations in split ring resonators in the 

THz range. An all-dielectric metasurface composed of an array of nanodisks was 

built [46] giving resonance in the SWIR range, and the LC layer on the top induced 

a shift of about 70 nm and modulation depth of 75%. Another all-dielectric device is 

the guided mode resonance (GMR) structure we demonstrated [8]. It is composed of 

thin subwavelength grating on top of a waveguide layer and covered with 2000 nm 

LC and showed voltage-induced tuning of the resonance by 40 nm and more than 

80% modulation depth in the SWIR range. A thick subwavelength TiO2 grating 

exhibiting resonances in reflection, like the thin grating GMR, was also investigated 

by us [47] as a refractive index sensor. In this case, the grating itself acts as 

waveguide, thus providing the GMR peak; however, additional resonances were also 

observed in the simulations such as the bound in the continuum (BIC) ultranarrow 

resonance. Later, a tunable MTM based on 2-D metal-dielectric composite was 

reported to operate in the NIR region [48]. Results showed that the metamaterial 

exhibits a negative index band between 1.37 µm and 1.47 µm when εLC is 2. As εLC 

increases, the negative index band gradually decreases from shorter wavelengths
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Fig. 3 (a) The designed ideal metasurface combined with the LC layer, transparent electrodes and 

alignment layers. (b) Experimental setup for device characterization. (c) Measured transmission 

spectra for the QWP, HWP, and FWP modes between crossed and parallel polarizers 

to the longer wavelength side until it completely disappears for εLC ≥ 2.7. The 

proposed near-IR MTM can reconfigure the index of refraction over a negative-

zero-positive range from λ = 1.37 µm to  λ = 1.47 µm, which makes it a promising 

candidate for applications requiring tunable devices. The study suggests that a 

minimum practical value for the permittivity of an LC is εLC = 2, making this MTM 

design highly practical. In their work, the negative index nature of the composite 

structure is analyzed for near IR and extended to the mid-IR range for usability in an 

extensive spectral range. An LC tunable metal-dielectric-metal cavity structure was 

demonstrated [49] to create an electrically adjustable LC THz MTM polarization 

converter. A new MTM composite of nanoporous microparticles (NMPs) in LC was 

shown by us to act as a voltage tunable scattering device exemplified using p-Si 

NMPs [50], organic cigar-shaped cochleate NMPs [51], and octa-decanol NMPs 

[52] doped in small concentrations to the LC. The NMP itself acts as a tunable meta-

atom since the LC infiltrates the nanopores and modifies the effective refractive 

index when an external field is applied. Very recently [53] our group demonstrated 

a tunable achromatic waveplate based on nanograting made of Si combined with 

8 µm thin LC layer operating in the SWIR range showing fast tunability between 

quarter, half, and full waveplates, see Fig. 3. 

The group of Chu [54] recently demonstrated a tunable filter based on a 2D array 

of a-Si nanodisks covering the C-band telecommunication window using the organic 

photoalignment layer AZB. They showed that photoalignment gives better contrast, 

but compared to flat surface devices it is still lower by a factor of 4–5. The resonance 

dip however has a FWHM of more than 30 nm, indicating that it is far from useful 

in practical applications.
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Since LCs have a large thermo-optic effect, the same tunable MTM structures 

can also be tuned thermally. A thermo-optic LC-MTM was reported by Liu et al. 

[55] using an electrical split ring resonator structure. In this work, the E7 LC was 

infiltrated between the MTM and an additional 1-mm-thick quartz cover slip. The 

maximum shift induced is −12.3 GHz. After infiltration of the metamaterial with 

LC, the resonant dip shifted to 1.161 THz for the LC-orientation parallel to the 

split opening and 1.154 THz when the LC is perpendicular to the split opening. 

The guided mode resonant MTM structure was demonstrated in reference [8] as  

a potential thermo-optic sensor and filter near the phase transition from nematic to 

isotropic where the thermo-optic effect is enhanced. Our NMP-LC MTM composite 

[48–50] was also shown to be tuned by temperature. 

LCs also have magnetic anisotropy, and the molecules can rotate in response 

to a magnetic field. A negative index device was proposed based on SRRs and rods 

arranged in a periodic manner by Pendry [56]. By utilizing a similar design of MTM, 

Zhang et al. [57] developed a magnetically tunable LC MTM device operating 

in the GHz range. Resonance shift was analyzed showing that the effective index 

change in the composite structure is linearly dependent on the LC index change. 

Using a photoelastic LC elastomer with a plasmonic metasurface on top, Liu et al. 

demonstrated tuning of the plasmonic dip by more than 200 nm in the SWIR range 

optically [58]. 

One of the attractive MTM devices is flat lenses, which can be engineered with 

a radial refractive index profile achieved by varying the density of the unit cells 

(photonic atoms) of the MTM. The index profile can be continuous as with glass 

lenses or discrete as with diffractive lenses. By infiltrating LC in between and 

within the unit cells, it is then possible to vary the focal length. One potential 

application of varifocal flat lenses is in the field of virtual and augmented reality. 

By incorporating these lenses into head-mounted displays, it could be possible to 

provide a more realistic and immersive experience to users by dynamically adjusting 

the focal length of the lenses to match the distance of virtual objects in the display. 

Bosch et al. demonstrated bifocal metalens tunable with LC in the vis-NIR range 

[59]. A remarkable work by Leninger et al., studied the LC infiltration within the 

nanoapertures of a 2D metasurface with a radially variable effective index using 

three nematic LC mixtures [60]. For more information on tunable metalenses, the 

reader is referred to the recent [39] review article. A closely related topic to tunable 

metalenses is the beam steering devices based on LC-MTMs with the common 

feature of both being phase-only spatial light modulators. Using a metasurface made 

of TiO2 nanoantenna covered with 1500 nm LC layer, Li et al., demonstrated an 

SLM with improved pixel size down to one micron because most of the phase 

modulation originates from the resonant metasurface rather than from the LC 

[61]. They found a ± 11◦ controlled beam deflection and a 36% modulation in 

transmission. 

As we can see from this short review, photonic MTM devices that tune over 

a wide spectral range, with high modulation depth, fast speed, narrowband, high 

light throughput, and easily constructed do not exist yet. The demonstrations done 

so far use nematic LCs, which are limited in their response time to the tens of
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msec range. In addition, there is an alignment problem of the LC molecules inside 

nanoapertures in the specific direction required, which was partially solved using 

photoalignment polymers deposited by spin coating—problematic when done on 

nanostructured surfaces. In our opinion it is possible to resolve these problems using 

unique MTM designs, using photoalignment of thin solid films prepared by physical 

vapor deposition, using unidirectional nanopatterning with ultrashort pulsed laser, 

and oblique angle deposition combined with photolithography, as well as materials 

selection. Based on the existing state of the art, we can summarize the reasons for 

the limited performance of the demonstrated LC tunable PMM devices as follows: 

(a) LC molecules alignment in the desired orientation inside nanoapertures is not 

well controlled. Recent experiments showed that LC can infiltrate nanoapertures 

[62], though the nature of the alignment inside and how to control it is not 

a resolved problem. For long wavelengths in the THz or microwaves region, 

the apertures can be as large as microns or more, therefore it is much easier 

to control the LC alignment for such devices [1]. However, controlling the LC 

alignment is not easy for the optical regime where the apertures are in the order 

of 100 nm to submicron. 

(b) Nematic LCs, which are optimized for displays, are limited in their response 

time to the tens of msec range and increase with the thickness d following d2 

behavior. Although adding a separate few microns thick LC layer to the PMM 

was shown to improve PMM device properties as a tunable device compared to 

the equivalent device not containing MTM, the switching speed is still limited, 

therefore there is a need to resolve the problems associated with LC alignment 

within nanogaps, not only for nematic LCs but also other fast modes as well. 

(c) Existing resonant PMMs, particularly those with high quality factors (high-Q 

resonances) usually have a short dynamic range, thus limiting the tunability to 

a maximum spectral range of a few tens of nm. Hence, novel resonant PMM 

designs that exhibit broadband tuning are needed. 

(d) Nonresonant PMMs usually behave as anisotropic materials and therefore 

special care should be taken to tune them with liquid crystals as the relative 

orientation of the principal axis of the two media is crucial for tunability. Hence 

there is a need to resolve the LC alignment problem in nanoapertures. 

(e) Large-scale production of existing PMMs in the optical frequency regime is 

problematic because the structures contain complex nanoscale features in the 

lateral dimension. 

2.2 Obtaining Faster High-Quality LC PMM Devices 

Since the nematic LC response time decreases inversely with the square of LC 

layer thickness, PMM-based devices are expected to be faster by two orders of 

magnitude than the existing LC devices. Ultrafast LC modes such as the ferroelectric 

and electroclinic (chiral smectic A) LCs can be integrated to generate tunable
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devices having micro- and nanosecond switching times. The PMM architectures 

can enhance these LC materials’ electro-optic response while maintaining their 

large speed. In standard LC devices, usually, the electro-optic response and speed 

compete analogously to the time-energy uncertainty principle, while here we 

propose to break this limitation by combining LCs and other EO materials with 

PMMs. Notably, the ubiquitous LC display has LC-cells or panels, in which the 

liquid crystal must be perfectly aligned over large areas, up to square meters. 

Therefore, the simplest, highest symmetry, LC phase (nematic) is used, which 

allows high yield in manufacturing. However, it is well known that the response 

speed of nematic LCs is limited to about 10 ms, which is just about good 

enough for active-matrix video displays [63]. About 100 to 1000 times faster 

switching can be found in ferroelectric and antiferroelectric liquid crystal (FLCs 

and AFLCs, respectively) modes [64]. FLCs and AFLCs are, with their layered 

(smectic) structures, unfortunately much more challenging than nematics in terms 

of alignment, which has put them on the sideline in the display arena, except 

for in some high-performance FLC microdisplays, where the small area (<1cm2) 

allows for high yield. Hence there is a place to explore and develop high speed LC 

modes, for use in small, ultrafast LC photonic MTM devices and demonstrate their 

suitability for medical diagnostics, bio and chemical analytes sensing, and remote 

sensing. 

Nematic-Based Liquid Crystals Conventional LCs (nematic) respond to an applied 

electric field via their dielectric anisotropy. The switching (or relaxation) back 

to the field-free state is driven solely by elastic forces, making the relaxation 

time proportional to the square of the LC layer thickness. The switching times 

for nematic LCs are generally limited to the msec range [65], although several 

complex methodologies have been applied in attempts to effectively reduce the 

switching time such as: (i) driving voltage waveform manipulation [66] (ii) dividing 

the device into several thinner (and therefore faster) sub-devices (iii) optimizing 

material parameters [67], (iv) optimizing the anchoring strength and pretilt on 

the surfaces, (v) vertically aligned [68], in-plane switching mode [69], twisted 

alignment, asymmetric alignment [70–72], (vi) the use of dual frequency mode [73], 

blue phase Kerr effect [74, 75], the flexoelectro-optic mode [76–78] in short pitch 

chiral nematic (cholesteric) phase, (vii) using nano- or microstructured LC networks 

[79] such as the nano-polymer dispersed LCs (nPDLCs) and stressed LCs [80, 81], 

and (viii) working at elevated temperatures to reduce the LC viscosity (see Fig. 4 for 

some illustrations). In the Kerr effect in the isotropic phase, just above the nematic 

phase, or when the switching is caused by the electric field-induced modification 

of the order parameters and not due to reorientation of the optic axis, the response 

becomes closer to the nsec range [82, 83], but the effect is very small producing 

birefringence changes in the order of 0.001–0.01 at applied voltages of the order 

of kV. 

The cases of submsec switching and below are limited in their applicability 

because the associated electro-optic effects become weak as in the Kerr effect case:



Photonic Metamaterials for Light Modulation, Energy Saving, and Sensing Applications 97

Fig. 4 Schematics illustrating some important configurations for: (a) typical nematic LC device in 

the parallel alignment geometry, (b) parallel alignment geometry, which gives slightly faster speed, 

showing also the deformed structure as the voltage increases, (c) vertically aligned short pitch 

cholesteric LC with a field applied in the plane of the substrates using interdigitated electrodes, 

which gives speeds in the sub-msec range in what is called the flexo-electro-optic effect, (d) 

geometry of LC principal dielectric constants, and (e) interdigitated electrode structure on one 

substrate, showing also the alignment direction at an angle usually α ~ 10◦ with respect to the 

electrode fingers 

high voltages are needed and usually, heating is required, which is not desirable 

in optical systems as it produces instabilities and noise, and finally increasing the 

number of LC elements (such as in the Lyot-based [84, 85] LC tunable filter (LCTF) 

configuration) makes the device bulky and lossy. A relatively faster Lyot-based 

approach was proposed recently with higher light throughput and more compact, 

however, it is suitable only for multispectral operation [86]. 

Nevertheless, some of these improvements are useful and their potential can 

be evaluated by trying further improvements for the specific PMM devices. Some 

resonant LC devices, which have been around for a few decades, require smaller LC 

layer thicknesses such as the tunable Fabry-Perot [87] or guided mode resonance 

filter [8]. Nonetheless, the manufacturability of these devices is not easy, their 

dynamic range is limited to a few tens of nm and the required LC thickness is 

still in the few mm range, meaning response time in the msec range. In general, 

resonant structures have a small dynamic range; however, some PMM structures 

can circumvent this problem by using the broadband nature of lossy surface waves.
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Like anisotropic layers inside the waveguide, LCs anisotropy can cause coupling 

between the TE and TM waves. This may result in the appearance of polarization 

change and additional resonances at the polarization orthogonal to the incident one 

[88]. Nevertheless, with LCs where the optic axis is rotating in the same plane as 

a voltage is applied, it is possible to excite only one mode independent from the 

other—see analysis of this problem in our earlier article [89]. The polarization-

independent modes such as nano-PDLCs and the blue phase Kerr effect can be used; 

although showing smaller refractive index modulation, with their highly sensitive 

structure, wide tuning range and large modulation depths can still be achieved. 

These LC phases are also faster, approaching fractions of microseconds response 

time. It should be noted that in PMM devices the nanoscale LC gaps allow utilizing 

the full potential of these fast LC phases at relatively small voltages because the 

Kerr-induced birefringence is proportional to the square of the applied electric field. 

Ferroelectric Liquid Crystal Modes A more direct, and attractive way to reduce the 

LC response times is to use chiral (*) polar smectic liquid crystals. Smectic LCs 

are layered media. In the smectic A* phase the director is parallel to the smectic 

layer normal z, (Fig. 5a) while in smectic C* and Ca*, the molecules are tilted at 

the angle θ with respect to z (Fig. 5b–c). In chiral tilted smectics [14], the director 

makes a helix along z (Fig. 5b), and in materials with a period (pitch) smaller than 

the wavelength of light, the average optic axis is along z. Furthermore, there is a 

spontaneous polarization density P normal to the director and to z, which allows 

for polar azimuthal switching of n about z at fixed θ under the torque P × E. The  

synclinic SmC* phase is ferroelectric while anticlinic SmCa* is antiferroelectric. 

The following three electro-optic modes are attractive for incorporation of PMM 

structures. 

– Deformed helix ferroelectric mode. In short-pitch FLCs, a field applied normal to 

z gives a deformation of the helix, causing a tilt of the optical indicatrix in a plane 

normal to E, cf. Figure 5b. This is the deformed helix ferroelectric (DHF) mode 

[90, 91]. When the period is much less than the wavelength p < λ, it behaves as a 

uniaxial medium, which becomes biaxial when a field is applied [92, 93]. In Fig. 

5b the mode is called vertically aligned DHF to compare with the standard one 

where the helix is in the plane of the substrates [94, 95]. The tilt is analogue in the 

applied field and allows for continuous phase-only tuning. In recent years, novel 

DHF materials with higher molecular tilt and smaller pitch have been developed, 

providing faster and higher amplitude switching [40]. Moreover, as p < <λ, any  

light scattering from the periodic structure is ruled out. Hence, in the DHF mode, 

the structure behaves effectively as a continuously field-controllable retarder, in a 

wide region before the helix completely unwinds. Color switching and optically 

addressed modulators were demonstrated first in reference [96]. 

– Surface-stabilized FLC and AFLC modes where the helix is unwound by surface 

forces, and therefore providing only binary operation, have been successfully 

commercialized in high-resolution microdisplays where both grayscale and 

color are written in the time domain. In these displays, the molecular tilt is
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Fig. 5 Schematics of analogue (a and b), binary (c), and ternary (d) smectic modes. In the 

analogue EC and DHF modes the index ellipsoid (blue) rotates in a plane normal to E producing 

an effective ellipsoid (projection onto the substrate plane) depicted as empty ellipses. NOTE: The 

picture is highly out of scale. The smectic layers are 2-3 nm thick, the DHF SmC* pitch is about 

300 nm, and the LC layer thickness planned is usually < 10 μm. We are grateful to Prof. Per 

Rudquist for sharing this figure 

ideally 22.5◦. For many purposes, one may focus on FLC materials with 45◦ 

tilt, which allows for pure phase-only modulation, cf. Figure 5c and d. In  

the antiferroelectric SmCa* phase the structure is anticlinic. Surface-stabilized 

orthoconic AFLCs [97, 98], ideally provide three level phase-only modulation 

[99], at a slightly lower speed than FLCs. Alignment of the surface stabilized 

ferroelectric liquid crystal (SSFLC) in a twisted-splayed geometry has been 

shown to reveal an analogue response and phase-only modulation [100].
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– The electroclinic (EC) effect in SmA* [101] is the fastest useful electro-optic 

effect in LCs, under certain conditions even providing sub-microsecond switch-

ing. This mode has the same geometry as the DHF-mode. The first fast Optically 

addressed spatial light modulator (OASLM) using this mode was demonstrated 

by the main PI [102] with a thorough investigation of its electro-optic switching 

characteristics [92]. The highest electroclinic switching amplitude is found in the 

so-called deVries smectic A* materials [103, 104]. 

In some photonic MTM structures, the LC layer is sometimes required to give 

phase-only modulation, for which the analogue vertical alignment FLC modes 

(DHF and EC) can be used using interdigitated electrodes on one of the substrates 

to apply the electric field parallel to the plane of the substrate (see Fig. 4e). For 

certain applications based on switching between two or more wavelengths, SSFLC, 

and orthoconic AFLCs can be explored. 

Aligning the LC molecules on the surfaces of the substrates is a crucial issue in 

obtaining the desired device quality. All the LC tunable PMM devices reported so 

far mainly used mechanical rubbing and sometimes only on one surface, though no 

special attention was devoted to the alignment within the nanoapertures. For a device 

with light–matter interaction mainly occurring inside the nanogaps, a different 

alignment strategy should be used to obtain the desired LC director orientation 

and uniform defect-free structures. Since the interaction region in the waveguide 

case is relatively large (0.1-1 mm), the LC layer must be free of defects because 

scattering and losses in such a large region become significant. Recently [54], 

photoalignment on metasurface made of nanodisks showed some improvement 

over the standard rubbing technique. However, photoalignment using polymer films 

needs spin coating, a technique that can produce irregularities on the metasurface, 

particularly when the lines or disks are a few hundred nm or larger in height because 

of the walls and edges. This can be the reason why the dips obtained in ref. [54] are a  

few tens of nm wide since defects broaden the resonance and reduce its contrast. We 

identified three alignment strategies that need to be investigated further to resolve 

the problem as follows (Table 1): 

(i) Photoalignment using nano-dimensional chalcogenide glass film: This is based 

on the permanent photoalignment we discovered [105–108] a few years ago 

using 30–50 nm films of chalcogenide glass (As2S3, As2Se3, . . . ) deposited 

using physical vapor deposition. A thin film of 30–60 nm is deposited on the 

surface and then irradiated with linearly polarized blue light. The LC molecules 

on the surface tend to align along the polarization direction due to the photo-

induced anisotropy on the surface. Other photosensitive materials showing 

high photoinduced anisotropy, which should be investigated, are a-Se and GST. 

(ii) Unidirectional surface nanostructuring using ultrashort pulsed lasers: In this 

methodology, polarized femtosecond laser pulses are shone on the surface 

at energies just above the ablation threshold (typically few tens of pulses at 

1030 nm wavelength, pulse width of the order of 100–200fsec and energy 

of 10–100nJ). A nanograting pattern appears with the lines perpendicular to 

the polarization direction. We have proved this on the ITO electrode layer
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Table 1 Overview of the faster LC modes 

LC mode Typical rise time Typical decay time Comments 

Pretilt angle 

control 

Reduces the rise time 

by up to 50% for small 

pretilt angle, the effect 

vanishes at high 

voltages 

Increases the decay time 

by up to 30% 

Can be applied with  

other modes, but not 

for all applications 

Drive scheme Hundreds of 

microseconds up to 

few msec depending 

on the overshooting 

voltage 

Few msec till tens of 

msec, depending on 

thickness as d2 

Can be applied with all  

other modes 

Dual frequency 

LCs 

Few hundreds of 

microseconds 

depending mainly on 

the LC material 

>500 µs up to few msec, 

varies with thickness as 

d2 

Nano-polymer 

dispersed LC 

(Nano-PDLC) 

From sub-msec up to 

ten msec, depending 

on the LC used, the 

polymer matrix, 

voltage applied, and 

thickness of the cell 

Few msec till hundreds of 

msec, depend mainly on 

the composite materials 

and thickness as d2 

Anti parallel NLC Few msec till tens of 

msec, decreases as 

1/V2 

Tens till hundreds of 

msec, varies with 

thickness as d2 

Blue phase Sub-msec, can be 

reduced to 100 µs if  

doped with orientation 

polymer-stabilizing 

dopants 

Sub-msec Have narrow 

temperature range 

Twisted nematic Few msec till few tens 

of msec, decreases as 

1/V2, and depends on 

thickness d2 and the 

LC molecules 

Tens of msec, varies with 

thickness as d2 

Ferroelectric LCs Can reach down to 

microseconds even at 

low voltage if the pitch 

is much smaller than 

the cell thickness 

Decay time can be shorter 

than rise time and reaches 

down to few 

microseconds 

Operate under DC 

voltage 

Electroclinic LCs Reaching down to 

sub-microseconds 

Larger than the rise time 

by a factor of 2 

Strong temperature 

dependence 

Flexoelecto-optic 

effect in 

short-pitch 

cholesterics 

Few microseconds Few tens/hundreds of 

microseconds (~ten times 

slower than rise time) 

Optic axis rotates in a 

plane perpendicular to 

the applied field 

Nanosecond 

EMOP mode 

Nanoseconds Tens of nanoseconds Based on electrically 

induced modification 

of the order parameters 

(EMOP) of NLCs 

rather than on the 

Frederiks reorientation 

of 
−→
n .
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showing excellent molecular alignment along the nanotextured lines [109, 

110]. Nanostructuring with ultrafast laser is a well-established methodology 

on a large group of materials. 

(iii) Oblique angle deposition of oxides: This type of deposition at a large angle 

(~60◦) produces nano-columns on the surface oriented along the same direc-

tion, which causes the LC molecules to align along them. SiO2 films and other 

materials of 20–50 nm thickness were shown to give good alignment [111]. 

3 PMMs for Energy Applications 

3.1 Introduction 

The need for efficient energy conversion is very necessary to meet the increase 

in environmentally friendly, renewable energy requirements. From the past decade 

we have seen many techniques to improve the energy efficiency by utilizing the 

advancements in the field of plasmonics and various fabrication [112–116]. Solar 

energy conversion technique paves the way for various applications including 

solar absorption, water desalination, distillation, wastewater management, etc. 

[117–119]. However, the main snag in developing solar absorbers is to generate 

strong spectral selectivity, near-perfect solar absorption, angular independence, and 

polarization independence. Achieving near-ideal solar thermal energy conversion 

requires absorbers that exhibit near-perfect absorption from the ultraviolet (UV) to 

the near-infrared (NIR) regions while minimizing mid-and-far infrared (IR) emis-

sions. Traditional PMM’s relay on localized surface plasmon resonance (LSPR) at 

metal/dielectric interfaces [119, 120], which lacks the broadband operating wave-

bands. Recent advancements have demonstrated that having impedance matching, 

slow light PMMs can greatly enhance the broadband spectral absorption Meta-

material nanostructures, particularly those utilizing metal/dielectric stacks have 

shown promise in realizing broadband high absorption. These structures, known as 

hyperbolic metamaterials (HMM), can achieve high absorption efficiencies across a 

wide spectral range [121–123]. 

3.2 Design Physics of Metamaterial Photothermal Converters 

Metamaterials can either be of periodic or aperiodic structures that are subwave-

length, enabling the device to manipulate light in a very peculiar way compared 

to naturally occurring materials. This property arises solely due to the struc-

tural composition rather than material composition. For photothermal applications, 

metamaterials can be designed to have high absorption across a broad range of 

wavelengths. This can be achieved by various techniques such as:
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3.2.1 Localized Surface Plasmon Resonances (LSPR) PMM 

LSPR can significantly enhance the local electromagnetic field, leading to increased 

absorption of light. Earlier PMM absorbers were developed using LSPR phe-

nomena. The excitation of LSPR at metal/dielectric interfaces results in strong 

absorption peaks, which can be tuned by adjusting the size, shape, and material 

composition of the nanostructures. In order to attain broadband absorption a 

simultaneous excitation of magnetic and electric resonances resulting from localized 

surface plasmon resonance at metal/dielectric interfaces is required [124, 125]. In 

one of the promising works, a near-ideal total solar-thermal conversion efficiency of 

up to 90.32% at 373.15 K was reported for solar absorbers, with an ideal efficiency 

of 95.6% [125]. According to the results obtained, it shows that geometric parameter 

adjustment can sustain efficient solar thermal conversions at greater operating 

temperatures. The structure has shown near perfect absorption at broader angle 

range of up to ±60 degrees, hence the absorber has a huge potential to be used 

for solar energy harvesting applications irrespective of the incident polarization. 

There have been published works that combine the additional MM layer with these 

multilayer topologies. One such design has shown broadband ideal absorption in 

the solar spectrum region [126]. The design of the ultra-wideband (UWB) ideal 

solar energy absorber is based on a Ti ring with a SiO2-Si3N4-Ti thin film layered 

structure. This absorber has a total thickness of 620 nm and a basic structure (in this 

case a ring shape), making it relatively straightforward to build. It can also overcome 

the constraints of typical solar energy absorbers, such as poor average absorption 

rate and perfect absorption bandwidth. The absorptivity at 3683 nm is greater than 

90% in the 300–4000 nm range; the average absorptivity is 95.0%, and the weighted 

absorptivity under air mass (AM) 1.5 is 97.0%. Perfect absorption values of 99.9% 

and 99.7% were specifically attained at wavelengths of 483 and 2380 nm. The metal 

used in this work is very ideal for the photothermal conversion studies as Ti is very 

stable at room temperatures and its boiling point is as high as 1668◦. Similar to 

typical lossy metals, Ti also has large dielectric loss term, which also assists in the 

absorption efficiency (Fig. 6). 

Having a thick layer of Ti at the bottom of the design ensures that almost all the 

EM signals are blocked from passing through the structure. This design technique 

has become quite common in almost all the PMM absorbers reported recently, as 

it eliminates the possibility of transmission through the device. It is observed that 

absorption in the visible spectrum is caused by the resonance inside the Ti ring while 

the absorption at the NIR region is caused largely by the resonance in the outer ring 

regions. 

3.2.2 PMM Based on Dipole Interaction 

In metamaterials, magnetic polaritons can be excited to achieve high absorption 

over a broad range of wavelengths. Magnetic polaritons are hybrid quasiparticles 

resulting from the strong coupling between electromagnetic waves and magnetic
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Fig. 6 (a)–(c) 3-D schematic diagram of the UWB solar energy absorber. (d) Comparison of 

the solar energy absorption of the standard solar radiation spectrum AM 1.5 (black line) and the 

UWB solar energy absorber under AM 1.5 (red line). (e) spectrum of the solar energy absorber. 

Reproduced from Ref. 126 with permission from the Royal Society of Chemistry 

dipole excitations in a material. These polaritons can be excited in metamaterials 

through specific resonant structures, which support magnetic dipole resonances. 

This phenomenon will usually occur at metal/dielectric interfaces as well as on the 

surface of the PMM metal structures. Surface currents formed across the structure 

will define the excitation of magnetic or electric dipole formation. 

As mentioned before for every metal/dielectric PMM device, it is very common 

to have a thick block of EM signal blocking material placed on it to block the 

transmission of light through the device. For HMMs, increasing the layers of 

metal/dielectric stack will eliminate the need of a metal block. Having layers of 

meta-atoms arranged in parallel or perpendicular to the incident light, it is possible 

to create dipole effect in the PMM structure. When combined with multi-material 

MM layers, it was shown that both electric and magnetic polaritons can be excited 

simultaneously to generate broadband absorption [127].
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Here a three-layer structure with an array of nano-cylinders made up of two 

different materials (Ti and Cr) is chosen to act as the meta-atom layer. Al2O3 is 

chosen as the spacer between the top layer and the bottom reflective thick Au metal 

layer. There is an additional brown carbon layer added between the nano-array and 

dielectric spacer to enhance the absorption. 

It is observed that the absorber presents a good absorption performance and wide 

absorption bandwidth in the wavelength range of 300–1200 nm, which accounts 

for 82.74% of solar energy. Absorber has been found to have strong absorption 

capabilities and a broad absorption bandwidth within the wavelength range of 

300–1200 nm, which is responsible for 82.74% of solar radiation. In the visible 

spectrum, the absorbers made of various materials show an absorptance of about 

100%. Circulating current is shown in Fig. 7(ii (a)) at the interface between the Cr 

nano-cylinder and the Al2O3 layer at the wavelength of 300 nm, the currents inside 

of the two nanostructures are in opposite directions, leading to the fact that there is a 

clockwise circular current flow between these two nanostructures. Meanwhile, there 

is an anticlockwise current flow within the carbon layers. All these current flows in 

turn create the strong magnetic field explaining the large absorption in the visible 

region. Similarly, for other wavelengths 900 nm and 1200 nm, there is current flow 

unidirectionally indicating the weaker electric and magnetic plasmonic resonance, 

which explains why absorbance is reduced with the increase in the wavelength. 

Hence it can be noted from results that the formation of magnetic and electric 

polaritons is due to the peculiar patterning of the metal layers. Similar technique 

is utilized in many of the THz and GHz MM device studies published earlier. This 

is due to the fact that for most of such cases, there are metal/dielectric patterning 

done on the surface to create circulating surface current according to the shape of 

the pattern. 

3.2.3 Hyperbolic PMMs 

Absorption properties of hyperbolic PMM’s (HPMMs) are primarily determined 

by their ability to support high-k modes, which are surface plasmon polaritons 

(SPPs) or bulk plasmon polaritons (BPPs) that propagate along the interfaces of 

the material. These modes lead to enhanced electromagnetic field confinement and, 

consequently, increased absorption. The high density of photonic states in HMMs 

also contributes to their superior absorption characteristics. HMMs can achieve 

near-perfect absorption over a wide range of EM spectrum ranging from mm waves 

to nm range [128]. For instance, absorbers based on metal/dielectric multilayer 

structures or self-assembled metal nanoparticles often exhibit high thermal radiation 

in the mid- and far-IR regions, reducing their total solar-thermal energy conversion 

efficiency. These structures are a good candidates for water desalination. Porous 

plasmonic absorber can float naturally on water surface, efficiently absorb a broad 

solar spectrum (>96%), and focus the absorbed energy at the surface of the water 

to enable efficient (∼90%) and effective desalination. In the study conducted by
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Fig. 7 (i)3D design parameters of the PMM absorber (a) schematic of the PMM array. (b) unit 

cell of the absorber with geometric parameters, the height of the nanostructures is denoted by h and 

their diameter is d. The thicknesses of the Al2O3 layer, carbon layer, and Au layer are represented 

by t, m, and n, respectively (n = 100 nm, m = 5000 nm, t = 30 nm, d = 40 nm, h = 100 nm, 

and s = 140 nm.). (c) absorption spectra for the designed structure (ii) The current density vector 

distributions of the absorber on the plane of y = −70 nm. (a) Current density vector distribution at 

300 nm. (b) Current density vector distribution at 600 nm. (c) Current density vector distribution 

at 900 nm. (d) Current density vector distribution at 1200 nm. Reproduced from ref. 127 with 

permission from Elsevier 

Zhou et al. [129]. according to the study conducted by the authors, aluminum-based 

porous structure has shown larger durability and efficiency in water desalination. 

Design consists of nanoporous anodic aluminum oxide membrane and aluminum 

nanoparticles aligned on the side walls of aluminum oxide membrane. These closely 

packed nanoparticles create a strong plasmon hybridization effect and high-density 

surface plasmon resonances, which result in broadband absorption. The spontaneous 

formation of an oxide layer on aluminum nanoparticles (NPs) serves a dual purpose.
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Firstly, it acts as a protective barrier, enhancing the particle’s stability without 

requiring additional protection methods. Secondly, this oxide layer substantially 

alters the dielectric properties of the surrounding environment. This change in 

dielectric characteristics results in an extended absorption bandwidth, particularly 

toward the infrared (IR) spectrum. 

3.2.4 Interfacial Photothermal Converters 

Perfect absorber PMM can be an ideal candidate for interfacial photothermal 

conversion. These structures can be used to implement the water desalination 

process very effectively as most of the EM wave gets absorbed at the surface of 

the metamaterial layer. Though these structures work on the same basic principle 

as impedance matching, typical devices have thermal loss and deterioration over 

the prolonged period of use. In our lab we have developed a simple PMM structure 

for the interfacial photothermal conversion [130]. The structure consists of a typical 

metal/dielectric/metal layer, where the bottom metal layer will act as a reflector. A 

pacer made up of Si3Ni4 is used as a spacer. While considering the design we have 

chosen Si3Ni4 as a spacer since it is a good candidate to absorb IR range EM waves. 

Also, Silicon nitride is chemically stable and compatible with various fabrication 

processes, making it a reliable material for integrating into complex photonic and 

metamaterial structures. We have chosen tungsten(W) as the metal bottom layer as 

well as top MM patterning. A simple to fabricate mesh structure is designed with a 

thickness of 7 nm. These lines are designed in such a way that asymmetry is created 

in the mesh to facilitate broadband absorption. The period of the unit cell is 500 nm, 

the thickness of the bottom layer W is 170 nm, and the pacer layer thickness is 

110 nm (Fig. 8). 

For the IR region EM wave oscillates between the top pattern and the bottom 

layer while in the visible range, there is a significant amount of field localization at 

the surface and edges of the design. This enables the device to be used as a near-

perfect interfacial photothermal converter. 

Fig. 8 (a) is the unit cell schematic of the designed PMM device. (b) absorption spectra for the 

unpolarized light from visible to SWIR region
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3.3 Challenges and Future Directions 

Even if metamaterials have a lot to offer in terms of photothermal conversion, 

problems still need to be solved. These include the complexity of design, the 

requirement for scalability, and the material’s resilience at elevated temperatures. 

Research in the future is probably going to center on creating new materials 

and frameworks that can get over these obstacles. For instance, because all-

dielectric metamaterials do not experience the same losses as structures made of 

metal, researchers are looking at using them. Furthermore, efforts are still on to 

create metamaterials that can adapt their properties dynamically under changing 

environmental circumstances. Finally, metamaterial photothermal converters are 

a major development in solar energy collection technology, water desalination, 

etc. They are excellent prospects for a variety of applications due to their near-

perfect absorption, spectrum selectivity, and great thermal efficiency. With further 

study addressing issues related to durability, fabrication, and system integration, 

metamaterial-based solar thermal technologies have the potential to become more 

significant components of renewable energy systems. 

4 PMMs for Sensing Applications 

In the above sections, we have seen that using metamaterial surface one can easily 

modulate the light properties and can be used to concentrate the electric field 

for energy applications. In addition, the metasurfaces provide the feasibility to 

significantly tune the resonant electromagnetic (EM) spectra, which are influenced 

by the surrounding environment. Due to these resonant properties, the refractive 

index (RI) of nearby biomolecular analytes can be assessed by observing changes 

in the scattered output spectra. Therefore, designing sensitive meta atoms (MAs) 

for specific target wavelengths and configurations is crucial. Additionally, photonic 

metamaterial (PMM)-based RI sensing platforms offer several advantages over 

traditional optical biosensors including surface plasmon resonance (SPR), lossy 

mode resonance-based biosensors [131–134]. First, since RI changes are detected 

through macroscopic optical responses, primarily reflection or transmission of 

focused input beams, PMM-based sensors generally provide better fabrication 

tolerance and signal stability compared to SPR-based sensors. Second, the periodic 

arrangement of photonic unit cells leads to reduced radiative damping and higher 

quality factors, facilitated by phenomena such as plasmon-induced transparency and 

Fano resonances [135]. Finally, the functionality of a single nanophotonic RI sensor 

can be enhanced by incorporating PMMs. Carefully designed arrays of various 

photonic unit cells or supercells can produce multiple resonances and broadband 

slow light effects, which are difficult to achieve with SPR-based sensors. In addition, 

by analyzing interference between multiple beams, anisotropic scattering, and 

dispersive responses from certain EM devices, fundamental properties of incident
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EM waves can be detected and analyzed. Key characteristics of interest for PMMs 

include polarization and spectral composition, which are commonly analyzed using 

commercial bulk-optic devices such as polarimeters and spectrometers. As the 

demand for compact and integrated light-sensing components in electronic devices 

has surged, PMMs are emerging as promising platforms for implementing these 

functions in a compact and lightweight form [18, 136]. In this section of the 

chapter, we will discuss a few examples of using PMMs for sensing applications 

showing their potential for real-world applications along with challenges and future 

directions. 

4.1 Surface-Enhanced Raman Scattering Using PMMs 

The inelastic scattering of electromagnetic waves with the molecules produces the 

signature of molecular vibrational modes that occur due to the emission of new 

photons through a process called Raman scattering. It shows the broad range of 

advantages (i) unique fingerprint signature of the analyte causing high selectivity, 

(ii) easy sample preparation method, (iii) no signal interference from the water, (iv) 

single molecule detection, (v) feasibility of the multiplexed sensing with a single 

laser beam, and (vi) high throughput and point of care (POC) applicability by using 

commercially available portable Raman microscope. Raman scattering typically 

produces very weak signals due to low scattering cross-section (1/1012), which 

makes it challenging to detect with standard experimental methods. To address this 

challenge, Surface-Enhanced Raman Scattering (SERS) has been developed as a 

technique to significantly amplify the Raman signal. SERS relies on two primary 

mechanisms to achieve this enhancement: electromagnetic enhancement and chem-

ical enhancement [137]. In the first method, the enhancement of the electromagnetic 

field at the nanometallic surface is utilized to improve the signal intensity up to the 

orders of 108. This enhancement occurs when the wavelength of the incident light 

matches with the resonance wavelength corresponding to the Localized Surface 

Plasmon (LSP) resonance of the nanometallic substrate. LSP resonance refers to 

the collective oscillation of electrons at the surface of metallic nanoparticles, which 

intensifies the local electromagnetic field. The geometry of the nanoparticles plays 

a critical role here such as nanoparticles with sharp edges or tips can produce 

particularly strong SERS signals because these geometrical features enhance the 

local electromagnetic field more effectively [138, 139]. The later factor, which 

plays a significant role for enhancing the Raman signal is chemical enhancement. 

This mechanism involves interactions between the metal surface and the analyte 

molecules and occurs due to the charge transfer or the formation of chemical bonds 

between the metal and the molecules being studied. These interactions increase the 

polarizability of the molecules, which enhances the Raman scattering signal [140, 

141]. Essentially, the nanometallic surface can modify the electronic properties of 

the analyte molecules, making them more responsive to the incident light. Numerous 

studies have been reported in literature utilizing specially designed PMMs for
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enhanced electromagnetic field provided SERS-based applications [135, 142]. In 

addition, configurations that enable coupling between extended surface plasmons 

(ESP) and localized SP (LSP) can result in even greater signal enhancements. 

Studies have demonstrated that certain geometries, such as those with closely 

spaced metal structures or nanoparticles with specific shapes, can significantly 

boost the Raman signal through this coupling effect [143, 144]. A simplified model 

for understanding Raman scattering enhancement involves calculating the field 

enhancement near a single isolated particle. This model provides a way to estimate 

the total enhancement factor by multiplying the enhancements of both the incident 

and scattered fields. An example of this calculation for a SERS enhancement factor 

per molecule can be found in the supplementary materials of Ref. [144]. For a 

comprehensive overview of current developments and future directions in SERS 

technology, refer to the recent review in Ref. [138]. This review discusses the latest 

advancements in the field, including new materials, techniques, and applications. A 

few studies using PMMs for SERS applications will be discussed in Sect. 4.3. 

4.2 Surface-Enhanced Fluorescence (SEF) Using PMMs 

Like SERS, SEF is one of the important applications where enhanced electro-

magnetic field is used to improve the fluorescence intensity of the fluorophore 

when kept near PMMs. Fluorescence is a phenomenon observed in molecules 

known as fluorophores, where the molecular structures are capable of absorbing 

light at one wavelength (the excitation wavelength) and emitting it at a longer 

wavelength (the emission wavelength). When fluorophores are placed near metallic 

nanostructures, their fluorescence properties can change significantly. Appropriate 

selection of fluorophore is very important to ensure that optical absorption of 

the fluorophore and metal overlaps. The energy transfer between fluorophore 

and enhanced electromagnetic field due to PMMs is dominated by dipole–dipole 

interaction as follows if the distance between the PMMs and the fluorophore lies 

within 1–10 nm, the non-radiative localized field of the plasmon dipole can excite 

that of fluorophore [145, 146]. In addition, the lifetime of the excited state can be 

shortened in the vicinity of the PMMs. This reduction occurs because the metal can 

facilitate faster energy transfer processes, such as enhanced radiative decay, making 

the fluorophore return to its ground state more quickly. This phenomenon is also 

called Főrster resonance energy transfer (FRET). Understanding and controlling 

these interactions between fluorophores and PMMs are crucial for applications in 

fields such as biosensing, imaging, and molecular detection, where fluorescence 

signals are used to obtain detailed information about molecular interactions and 

concentrations. In the next sections, we will be discussing a few studies reported in 

literature applying PMMs for SERS- and SEF-based sensing applications.
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4.3 Studies Reported Using PMMs for Sensing Applications 

4.3.1 Ag Nanosculptured Thin Films (nSTFs) for SERS Applications 

Nanosculptured thin films (nSTFs) are the group of materials prepared by the 

oblique or the glancing angle deposition technique in forms of nanocolumns, 

nanoscrews, nanozigzags, and many other nanoshapes. Silver (Ag) nSTFs exhibit 

remarkable localized plasmonic properties that make them a promising substrate 

for enhanced spectroscopies such as SERS, SEF, etc. [147, 148]. These enhanced 

signals strongly depend on the morphological nature of n-STF metasurfaces such 

as nanorod diameter, height, pore size, etc., which depends upon the substrate 

properties, preparation conditions, etc. Their long-term stability in the water envi-

ronment makes them suitable candidates for biosensing in water. A nanobiosensor 

chip leveraging surface-enhanced Raman spectroscopy (SERS) on Ag nSTFs was 

developed to detect Escherichia coli (E. coli) bacteria at concentrations as low as 

a single bacterium [149]. The sensor was based on capitalizing highly enhanced 

plasmonic properties of silver nSTFs on a silicon substrate, significantly amplifying 

the Raman signals, as verified with adsorbed 4-aminothiophenol molecules. To 

ensure specificity, T-4 bacteriophages were immobilized on the sensor’s surface, 

enabling the targeted capture of E. coli bacteria. Figure 9 represents the used 

Raman setup and the corresponding enhanced Raman signal with varying bacterial 

concentrations on the Ag n-STF substrate. 

Results shown in Fig. 9 revealed that the sensor facilitates rapid, accurate, and 

stable detection of E. coli, even at ultralow concentrations, down to the level of 

a single bacterium within a 10 µl sample volume. This level of sensitivity and 

specificity positions the sensor as a powerful tool for detecting E. coli in various 

applications, offering both precision and reliability. 

Fig. 9 (a) SEM image of fabricated n-STF substrate (top view), and (b) SERS spectra with varying 

E. coli. Concentration over the Ag n-STF substrate. (Reproduced with permission from Ref. [149])
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4.3.2 LSPR-SPR Coupled Plasmonic Metasurface for SERS Applications 

As mentioned earlier, SERS is usually achieved when the Raman active molecule 

is brought near metal nanostructures-mediated plasmonic hot spots, it enhances 

the Raman signal up to a million times (even more, depending on nanostructure 

morphology). In addition, the signal can further be enhanced when the plasmonic 

nanostructure is kept near the metallic thin film causing the coupling of the propa-

gating surface plasmon resonance (SPR) and localized SPR (LSPR) [150–152]. For 

example, in a study reported by Srivastava et al., an approach is demonstrated to 

create extremely high electromagnetic hot spots using a configuration that couples 

propagating (or extended) and localized SPR [144]. In the study, conventional 

Kretschmann-Raether configuration is employed as shown in Fig. 10. 

The metasurface chip is fabricated by spin coating of Au nanoparticle over the 

Ag (silver) coated glass surface that enables the coupling the extended plasmon 

wave due to Ag thin film with localized plasmons in gold nanoparticles that are 

dispersed on top of the silver film. When the extended plasmon wave interacts with 

the gold nanoparticles, it excites localized plasmons within them. This interaction 

between the extended and localized plasmons leads to a substantial increase in the 

electromagnetic field, creating the extremely high hot spots necessary for enhanced 

sensing. A critical factor in achieving maximum enhancement is the interparticle 

gap—the distance between neighboring gold nanoparticles. The study highlights 

that the SERS enhancement is highly dependent on this gap ensuring the generation 

of the strongest possible hot spots. To test the SERS efficacy of the proposed 

configuration, a monomolecular layer of 4-aminothiophenol as a test molecule 

is placed between the silver film and gold nanoparticles. Figure 4(a) shows the 

electromagnetic enhancement with respect to interparticle gap while 4(b) represents 

Fig. 10 Schematic of the experimental setup for ESP-LSP coupled metasurface. (Reproduced with 

permission from Ref. [144])
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Fig. 11 (a): Maximum electric field intensity vs. interparticle gap of optimization of ESP-LSP 

enhancement and (b) SERS spectra obtained for 4-ATP biomolecules with varying nanoparticle 

concentrations over Ag surface. (Reproduced with permission from Ref. [144]) 

the SERS spectra obtained for 4-ATP molecule using varying concentrations of Au 

nanoparticles over the Ag surface (Fig. 11). 

From Fig. 4b, it is evident that an extraordinary SERS enhancement factor of the 

order of 1010 per molecule was found allowing for the detection of extremely low 

concentrations of molecules, which is vital for sensitive analytical techniques. The 

study’s findings have broad implications beyond just SERS. The ability to create 

ultrahigh electromagnetic hot spots can enhance the performance of optoelectronic 

devices, such as solar cells and photodetectors, by increasing their interaction with 

light. Additionally, this technology could be applied in energy systems, where 

plasmonic enhancements might improve the efficiency of energy conversion and 

storage devices, such as in plasmon-enhanced photocatalysis. In continuation, 

several studies have been reported to develop plasmonic metasurfaces leveraging 

the benefits of extended surface plasmons and localized surface plasmon coupling 

for metal enhanced spectroscopies and their applications for sensing. 

4.3.3 Self-Referenced Refractive Index Sensor Using Thin Dielectric 

Grating on Thin Metal Film (TDGTMF) Metasurface 

Recently, our group has been pioneering a self-referenced PMM, featuring a thin 

dielectric grating with a thickness of less than 200 nm atop a thin metal film mea-

suring under 50 nm [153–155]. These studies highlighted that employing a very thin 

metallic grating, in the range of approximately 20–40 nm, can significantly enhance 

optical transmission, resulting in the emergence of two distinct transmission peaks 

[156]. The TDGTMF geometry, as illustrated in Fig. 12, was found to support the 

excitation of two distinct optical modes [153, 154]. The first mode arises from 

the guided mode resonance induced by the dielectric grating. The observed dip in 

the reflection spectrum, rather than a peak, is attributable to the presence of the
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Fig. 12 Diagram of the self-referenced RI sensor utilizing the TDGTMF geometry. (Reproduced 

with permission from Ref. [4]) 

metal film beneath the grating. This mode predominantly manifests in the analyte 

medium and is referred to as the analyte mode. In contrast, the second optical mode 

is the ESP mode, which is excited at the interface between the metal film and the 

substrate, known as the substrate mode [154, 155]. Simulations of field distributions 

reveal how the presence and behavior of these fields relate to the sensitivity of each 

resonance to changes in the refractive index (RI) of the surrounding material. Since 

the substrate mode is minimally sensitive to the RI of the analyte, it can serve as a 

reference for detecting changes in the analyte RI. This is illustrated in the reflection 

RI-λ map of the TDGTMF geometry, with a grating thickness of h = 175 nm 

and a metal film thickness of d = 40 nm (see Fig. 13a). Notably, as the analyte 

RI increases, the substrate mode begins to diminish and nearly vanishes when the 

analyte RI approaches the RI of the SiO2 substrate (1.443–1.445 within the specified 

spectral range) [153]. The substrate mode, which has a greater penetration depth 

compared to the analyte mode [154, 155], is associated with localized resonant 

surface plasmon (LRSP) excitation, making it suitable for detecting larger biological 

entities such as cells and bacteria. The thickness of the metal film plays a crucial role 

in the excitation of the substrate mode (Fig. 13b).
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Fig. 13 (a) Reflection map of analyte RI vs. wavelength (λ) for the TDGTMF geometry with 

a grating thickness h = 175 nm and a metal film thickness d = 40 nm. (b) Reflection map of 

grating thickness d vs. wavelength (λ) with a grating thickness h = 175 nm. Simulations used TM-

polarized light at normal incidence, applied to a Si3N4 grating with a periodicity A = 1000 nm 

and grating spacings of 450 nm in both (a) and (b). Water and SiO2 were used as the superstrate 

(analyte) and substrate materials, respectively. (Reproduced with permission from Ref. [153]) 

This wok was then utilized to achieve multimodal sensing using thin dielectric 

grating by optimizing the metallic grating properties for desired applications like for 

surface-enhanced fluorescence (SEF) and SERS, the resonance wavelength should 

match with the laser wavelength used. The grating was fabricated using e-beam 

lithography method and utilized for SEF/SERS applications as follows: 

To estimate SEF enhancement, firstly, fluorescent signal was measured using 

a spectrometer. However, capturing fluorescence from granules on the sample 

proved challenging because the beam covered only part of the grating, potentially 

introducing noise. To address this issue, a fluorescent microscope was used to obtain 

an image of a cleaner area of the sample, avoiding granules (see Fig. 14a). This 

area was selected (marked by the blue rectangle in Fig. 14a) and converted into a 

2D gray-level image (Fig. 14b). The 1D gray-level plot along the red dashed line 

in Fig. 14c showed no saturation, ensuring reliable SEF enhancement estimation. 

Although the microscope (50× magnification and 0.8 numerical aperture) did 

not use polarizers or a single illumination angle, the captured image qualitatively 

demonstrated the reflecting grating’s SEF potential. The fluorescent signal was 

about an order of magnitude higher in the grating areas compared to the spaces, with 

the field also present within the grating spaces, as simulations indicated. Conversely, 

the signal in off-grating areas was much lower, exceeding a two-order magnitude 

difference compared to the grating lines. Note that due to structural imperfections, 

the EF (enhancement factor) varied depending on the fluorescent signal location, as 

seen in Fig. 14.
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Fig. 14 : (a) Fluorescent image of the structure. (b) 2D gray-level map of the area highlighted 

by the blue rectangle in (a). (c) 1D gray-level profile along the red dashed line shown in (b). 

(Reproduced with permission from Ref. [157]) 

To demonstrate multimodal sensing, SERS measurement was also studied in the 

Ag grating. It is worth noticing SERS measurements on the same chip in air due to 

a lack of resonance at 785 nm (laser wavelength). Using a higher RI medium could 

achieve resonance wavelength, matching with the laser wavelength. In addition, it 

may also be noted that although a medium with a higher refractive index could create 

a resonance at 785 nm, this approach was not pursued due to the sensitivity of Ag 

to water and its tendency to oxidize. Consequently, an Au grating was fabricated 

with parameters shown in the atomic force microscopy (AFM) images in Fig. 15a. 

The AFM images indicate that the grating period A, groove width w, and thickness 

h were kept as approximately 720 nm, 340 nm, and 215 nm, respectively, with a 

wall angle of about 50◦. The reflection spectrum in Fig. 15b shows a resonance 

at 794 nm, broad enough to overlap with the 785 nm laser, making it suitable for 

SERS. Figure 15c compares SERS signals from 4-aminothiophenol (4-ATP) on a 

flat Au film (blue curve), an Au grating on Au film (red curve), and Ag sculptured 

thin films (STF) (green curve). A 4-ATP monolayer was used in all cases due to 

its known self-assembly into a single layer on metal surfaces at low concentrations 

(<1% in ethanol or methanol).
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Fig. 15 (a) Atomic force microscopy (AFM) images of the fabricated Au grating. (b) Reflection 

spectra of the Au grating on an Au film. (c) Comparison of SERS signals: 4-ATP monolayer on a 

flat Au film (blue curve), 4-ATP on an Au grating on an Au film (red curve), and 4-ATP on Ag-STF  

on a Si substrate (green curve). (Reproduced with permission from Ref. [157]) 

4.3.4 Two-Dimensional Metallic Grating-Based PMM for Multimodal 

Sensing 

In previous studies, the subwavelength grating has shown a great potential for 

designing sensors for multimodal sensing for realizing SERS and SEF. However, 

these gratings suffer from higher variability as affected by several parameters such 

as ununiform surface, polarization dependent with respect to incident light, ambient 

temperature, etc. Among these mentioned factors, to eliminate the first two factors, 

our group has also introduced 2-D Ag grating with Au nano cubes on top of it 

[158]. The 2D structure eliminates the polarization dependency of the incident 

light, ensuring polarization-independent SERS, hence higher reproducibility along 

the periodic substrate gives ultrahigh SERS enhancement due to coupling between 

localized and extended plasmons, while its uniform surface minimizes signal 

variability. The substrate is designed using the finite element method (FEM) to 

achieve similar enhancement for both TE and TM polarized light. The chip is 

fabricated using electron beam lithography and characterized for surface-enhanced 

fluorescence (SEF) and SERS using R6G as the target indicator molecule. Figure 16 

shows the schematic of designed chip and corresponding reflected curve depicting 

the overlap of resonance dip wavelength and laser wavelength.



118 M. Abu Aisheh et al.

Fig. 16 (a) Schematic diagram of designed 2D grating chip and (b) Reflectance spectra for 

fabricated chip showing almost similar response for TE and TM polarized light minimizing 

polarization-dependent effect. (Reproduced with permission from Ref. [158]) 

The results show an eightfold enhancement compared to a bare Ag thin film 

for SEF and a staggering enhancement of 2.5 x 106 times for SERS. To evaluate 

the chemical sensing performance of the sensor surface, the chip was characterized 

with varying concentrations of picric acid (PA) detection and found the minimum 

detection limit up to the orders of few nM. 

4.3.5 Terahertz Plasmonic Metasurfaces for Sensing Applications 

Terahertz (THz) plasmonic metamaterials have garnered significant interest in 

recent years, particularly in the field of biosensing due to their noninvasive, 

nondestructive, and harmless interaction with biological tissues [159, 160]. These 

materials operate in the THz frequency range, which lies between the microwave 

and infrared regions of the electromagnetic spectrum, making them ideal for 

probing biological samples without causing damage. The ability to interact with 

biological tissues in both in vivo and in vitro environments positions THz plas-

monic metamaterials as powerful tools for quick infection diagnosis, cost-effective 

pharmacological studies, and real-time monitoring of biological processes. For 

example, toroidal metamaterials have emerged as a particularly promising class, 

owing to their ability to support high-quality, sharp resonance modes. These 

resonance modes are highly sensitive to changes in the surrounding environment, 

making toroidal metamaterials excellent candidates for the development of highly 

sensitive biosensors. In this context, Arash et al. explore the development of a 

THz metasensor based on a plasmonic surface consisting of metamolecules that 

support ultra-narrow toroidal resonances toward its application for the detection of 

virus-envelope proteins (ZIKV-EPs), which are relevant in the diagnosis of viral 

infections such as Zika virus [161]. Toroidal metamaterials represent a novel class 

of artificial materials that exhibit unique electromagnetic properties not found in 

natural materials. These metamaterials are engineered to support toroidal dipole
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Fig. 17 (a) Schematic image of the unit cell and (b) SEM image of toroidal metasurface. 

(Reproduced with permission from Ref. [161]) 

moments, which are distinct from the traditional electric and magnetic dipoles. The 

toroidal dipole moment arises from a specific arrangement of currents that flow in 

a toroidal (doughnut-shaped) pattern, leading to the formation of sharp and highly 

localized resonance modes. These resonance modes are characterized by their ultra-

narrow linewidths, which are indicative of high-quality factors (Q-factors). The high 

Q-factor of toroidal resonances makes them highly sensitive to perturbations in the 

surrounding environment, such as changes in the refractive index or the presence of 

biomolecules, making them ideal for sensing applications. 

In the study, the metasurface was composed of an array of metamolecules, 

engineered to support toroidal resonances when excited by THz radiation. The 

design process involved extensive numerical simulations to optimize the geometry 

and arrangement of the metamolecules, ensuring that the metasurface exhibits the 

desired electromagnetic response. Once the design was finalized, the metasurface 

was fabricated using standard microfabrication lithography techniques. After fabri-

cation, the metasurface is functionalized by immobilizing antibodies specific to the 

target biomarker, in this case, ZIKV-EPs. The antibodies are attached to the surface 

of the metamolecules, enabling the selective binding of the biomarker when it is 

present in the surrounding medium. Figure 17 shows the schematic representation 

of the proposed metasurface and SEM image of fabricated one using lithography 

method. 

Further, the sensing application of the proposed metasurface is based on the 

detection of shifts in the toroidal resonance frequency as a result of biomarker 

binding. When the target biomarker, ZIKV-EPs, binds to the functionalized surface 

of the metamolecules, it induces a change in the local refractive index around 

the metamolecules. This change in refractive index perturbs the electromagnetic 

environment of the toroidal resonance, leading to a measurable shift in the resonance 

frequency, as shown in Fig. 18. 

It is worth mentioning, when the GNPs are introduced into the medium sur-

rounding the metasurface, they increase the local concentration of the biomarker
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Fig. 18 (a) The transmission amplitude spectra for the fabricated metasurfaces for with and with-

out gold nanoparticles (GNPs) for varying concentrations of ZIKV-AB and ZIKV-EPs variants. 

(b) Calibration curve representing the toroidal resonance shift vs. ZIKV-EPs concentration for with 

and without GNPs. (c) The magnified transmission spectra as a function of frequency. (Reproduced 

with permission from Ref. [161]) 

near the metamolecules. This results in a more pronounced perturbation of the 

toroidal resonance, leading to a larger shift in the resonance frequency. By mea-

suring the shift of the toroidal dipolar momentum (up to Aω ~ 0.35 cm(− 1) for 

different concentrations of the biomarker, it was possible to analyze the sensitivity, 

repeatability, and limit of detection (LoD) of the enhanced metasensor. In the 

initial experiments, the metasensor was used to sense and quantify ZIKV-EPs by 

measuring the spectral shifts of the toroidal resonances as the concentration of the 

biomarker varied. The results showed that the metasensor was capable of detecting 

very low concentrations of the biomarker, with a high degree of sensitivity and 

specificity. The detection process is rapid, making the metasensor suitable for real-

time monitoring of biomolecular interactions. In conclusion, the THz metasensor 

based on toroidal plasmonic metamaterials represents a powerful and versatile tool
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for biosensing, with the potential to revolutionize various fields by enabling the 

detection of low concentrations of biomarkers with unprecedented sensitivity. 

4.4 Concluding Remarks 

In conclusion, metasurface sensors represent a significant leap forward in optical 

sensing technology. Unlike conventional optical sensors, which often face chal-

lenges related to sensitivity, size, and complexity, metasurfaces offer a solution 

through their unique design and material properties. Metasurfaces are engineered 

materials with nanostructures that allow for unprecedented manipulation of light. 

By precisely tailoring these nanostructures, metasurfaces can achieve exceptional 

levels of sensitivity, enabling the detection of subtle environmental changes or 

minute quantities of analytes. This chapter has summarized various metal sensors, 

including those based on STFs, ESP-LSP coupled metasurfaces, thin gratings, and 

toroidal metasurfaces, all of which demonstrate significant potential for developing 

sensors that are miniaturized, cost-effective, and capable of lower detection limits. 

However, challenges such as precise fabrication, stability, and signal variability still 

exist. With ongoing technological advancements, these limitations can be addressed, 

paving the way for the practical applications of metasurface sensors in real-world 

scenarios. 
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polarisation converter based on overcoupled metal-isolator-metal metamaterials infiltrated 

with liquid crystals. Nanotechnology 28, 124002 (2017) 

50. P. Lakshmi Madhuri, R.J. Martin-Palma, B. Martín-Adrados, I. Abdulhalim, Voltage con-

trolled scattering from porous silicon Mie-particles in liquid crystals. J. Molec. Liqu. 281, 

108–116 (2019). https://doi.org/10.1016/j.molliq.2019.02.085 

51. P.L. Madhuri, Z. Shuddhodana, M.A. Judeh, I. Abdulhalim, Cochleate-doped liquid crystal 

as switchable metamaterial window mediated by molecular orientation modified aggregation. 

Part. Part. Syst. Charact. 37(5), 2000067(8p) (2020). https://doi.org/10.1002/ppsc.202000067 

52. I. Abdulhalim, P.L. Madhuri, M. Diab, T. Mokari, Novel easy to fabricate liquid crystal 

composite with potential for electrically or thermally controlled transparency windows. Opt. 

Express 27(12), 17387–17401 (2019) 

53. M.A. Aisheh, M. Abutoama, M. Abuleil, I. Abdulhalim, Fast tunable metamaterial liquid 

crystal achromatic waveplate. Nanophotonics 12(6), 1115–1127 (2023). https://doi.org/ 

10.1515/nanoph-2022-0656 

54. X. Chang, M. Pivnenko, P. Shrestha, W. Weijie, W. Zhang, D. Chu, Electrically tuned active 

metasurface towards metasurface-integrated liquid crystal on silicon (meta-LCoS) devices. 

Opt. Express 31(4), 5378 (2023) 

55. L. Liu, I.V. Shadrivov, D.A. Powell, M. Rezaur Raihan, H.T. Hattori, M. Decker, E. Mironov, 

D.N. Neshev, Temperature control of terahertz metamaterials with liquid crystals. IEEE Trans. 

Terahertz Sci. Technol. 3(6), 827 (2013) 

56. J.B. Pendry, D.R. Smith, The quest for the superlens. Sci. Am. 295, 60–67 (2006) 

57. F. Zhang, L. Kang, Q. Zhao, J. Zhou, X. Zhao, D. Lippens, Magnetically tunable left handed 

metamaterials by liquid crystal orientation. Opt. Express 17(6), 4360 (2009) 

58. J. Liu, H. Zeng, M. Cheng, Z. Wang, J. Wang, M. Cen, D. Luo, A. Priimagi, Y.J. Liu, 

Photoelastic plasmonic metasurfaces with ultra-large near infrared spectral tuning. Materials 

Horizons 9, 942–952 (2022) 

59. M. Bosch, M.R. Shcherbakov, K. Won, H.-S. Lee, Y. Kim, G. Shvets, Electrically actuated 

varifocal lens based on liquid-crystal-embedded dielectric Metasurfaces. Nano Lett. 21(9), 

3849–3856 (2021) 

60. A. Liningera, A.Y. Zhub, J.-S. Parkb, G. Palermod, S. Chatterjeed, J. Boyda, F. Capasso, G. 

Strangi, Optical properties of metasurfaces infiltrated with liquid crystals. PNAS 117(34), 

20390–20396 (2020). https://doi.org/10.1073/pnas.2006336117 

61. S.-Q. Li, X. Xuewu, R.M. Veetil, V. Valuckas, R. Paniagua-Domínguez, A.I. Kuznetsov, 

Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. 

Science 364, 1087–1090 (2019) 

62. S. Mor, V. Torres-Costa, R.J. Martín-Palma, I. Abdulhalim, Planar polar liquid crystalline 

alignment in nanostructured porous silicon one dimensional photonic crystals. Appl. Phys. 

Lett. 97, 113106 (2010). https://doi.org/10.1063/1.3489428 

63. D.-K. Yang, W. Shin-Tson, Fundamental of Liquid Crystal Devices (Wiley, 2006) 

64. S.T. Lagerwall, Ferroelectric and Antiferroelectric Liquid Crystals (Wiley-VCH, Weinheim, 

1999) 

65. P. Bos, Fast-switching liquid-crystal effects for displays. Inf. Display. 23, 20–25 (2007) 

66. T.-H. Choi, J.-W. Kim, T.-H. Yoon, Wide-temperature high-speed operation of a nematic 

liquid crystal cell, in Proceedings SPIE 10125, Emerging Liquid Crystal Technologies XII, 

101251H, (2017). https://doi.org/10.1117/12.2253681 

67. F. Gou, H. Chen, M.C. Li, S.L. Lee, S.T. Wu, Submillisecond-response liquid crystal for 

high-resolution virtual reality displays. Opt. Express 25(7), 7984–7997 (2017) 

68. Y. Iwata, M. Murata, K. Tanaka, A. Jinda, T. Ohtake, T. Shinomiya, H. Yoshida, Novel super-

fast response, ultra-wide temperature range VA-LCD. SID Symp. Dig. Tech. Pap. 44, 431–434 

(2013). https://doi.org/10.1002/j.2168-0159.2013.tb06239.x 

69. T. Matsushima, K. Okazaki, Y. Yang, K. Takizawa, New fast response time in plane switching 

liquid crystal mode. SID Symp. Dig. Tech. Pap. 46, 648–651 (2015). https://doi.org/10.1002/ 

sdtp.10237


 6415 5228 a 6415 5228 a
 
http://doi.org/10.1016/j.molliq.2019.02.085

 19583 8549 a 19583 8549 a
 
http://doi.org/10.1002/ppsc.202000067

 29283 14084 a 29283 14084 a
 
http://doi.org/10.1515/nanoph-2022-0656

 8297 35116 a 8297 35116
a
 
http://doi.org/10.1073/pnas.2006336117

 9342
41758 a 9342 41758 a
 
http://doi.org/10.1063/1.3489428

 6859 49507 a 6859 49507 a
 
http://doi.org/10.1117/12.2253681

 2887 55041 a 2887 55041 a
 
http://doi.org/10.1002/j.2168-0159.2013.tb06239.x

 25964 57255
a 25964 57255 a
 
http://doi.org/10.1002/sdtp.10237


Photonic Metamaterials for Light Modulation, Energy Saving, and Sensing Applications 125

70. M. Tokita, O. Sato, Y. Inagaki, A. Nomura, Y. Tsujii, S. Kang, T. Fukuda, J. Watanabe, High-

density poly(methyl methacrylate) brushes as anchoring surfaces of nematic liquid crystals. 

Jpn. J. Appl. Phys. 50(7), 071701 (2011) 

71. O. Sato, N. Iwata, J. Kawamura, T. Maeda, Y. Tsujii, J. Watanabe, M. Tokita, An in-plane 

switching liquid crystal cell with weakly anchored liquid crystals on the electrode substrate. 

J. Mater. Chem. C 5(18), 4384–4387 (2017) 

72. Y. Choi, S.-W. Oh, T.-N. Choi, H.-J. Sohn, S.-I.N. Do, T.-H. Yoon, Liquid crystal cell 

asymmetrically anchored for high transmittance and triggered with a vertical field for fast 

switching. Opt. Express 28(14), 20553 (2020) 

73. A.B. Golovin, S.V. Shiyanovskii, O.D. Lavrentovich, Fast switching dual-frequency liquid 

crystal optical retarder, driven by an amplitude and frequency modulated voltage. Appl. Phys. 

Lett. 83, 3864–3866 (2003). https://doi.org/10.1063/1.1625114 

74. H. Choi, H. Higuchi, H. Kikuchi, Fast electro-optic switching in liquid crystal blue phase II. 

Appl. Phys. Lett. 98, 131905 (2011). https://doi.org/10.1063/1.3564896 

75. Y. Hisakado, H. Kikuchi, T. Nagamura, T. Kajiyama, Large electro-optic Kerr effect in 

polymer-stabilized liquid-crystalline blue phases. Adv. Mater. 17, 96–98 (2005). https:// 

doi.org/10.1002/adma.200400639 

76. P. Rudquist, L. Komitov, S. Lagerwall, Linear electro-optic effect in a cholesteric liquid 

crystal. Phys. Rev. E 50, 4735–4743 (1994) 

77. P. Rudquist, T. Carlsson, L. Komitov, et al., The flexoelectro-optic effect in cholesterics. Liq 

Crys. 22, 445–449 (1997) 

78. X. Wang, J.A.J. Fells, C. Welch, M.-G. Tamba, G.H. Mehl, S.M. Morris, S.J. Elston, 

Characterization of large tilt-angle flexoelectro-optic switching in chiral nematic liquid crystal 

devices. Liq. Cryst. 46(3), 408–414 (2019). https://doi.org/10.1080/02678292.2018.1502822 

79. A. Jakli, D.R. Kim, L.C. Chien, A. Saupe, Effect of a polymer network on the alignment and 

the rotational viscosity of a nematic liquid crystal. J. Appl. Phys. 72, 3161 (1992) 

80. O. Kurochkin, O. Buluy, N. Aryasova, V. Nazarenko, J. Varshal, M. Manevich, J.L. West, 

Y. Reznikov, Concentration dependence of phase retardation and optical response of stressed 

liquid crystal systems based on nematic liquid crystal pentylcyanobiphenyl. J. Mol. Liq. 267, 

115 (2018) 

81. J.L. West, G. Zhang, A. Glushchenko, Y. Reznikov, Fast birefringent mode stressed liquid 

crystal. Appl. Phys. Lett. 86, 31111 (2005). https://doi.org/10.1063/1.1852720 

82. V. Borshch, S.V. Shiyanovskii, O.D. Lavrentovich, Nanosecond electro-optic switching of a 

liquid crystal. Phy. Rev. Lett.  111, 107802 (2013) 

83. B.-X. Li, V. Borshch, H. Wang, Q. Li, S.V. Shiyanovskii, O.D. Lavrentovich, Enhanced 

nanosecond electro-optic effect in isotropic and nematic phases of dielectrically negative 

nematics doped by strongly polar additive. J. Mol. Liq. 267, 450–455 (2018) 

84. O. Aharon, I. Abdulhalim, Birefringent tunable filter with wide dynamic range. Opt. Lett. 34, 

2114 (2009) 

85. O. Aharon, I. Abdulhalim, Liquid crystal tunable filter with extended free spectral range. Opt. 

Express 17, 11426–11433 (2009) 

86. M. Abuleil, I. Abdulhalim, Narrowband multispectral liquid crystal tunable filter. Opt. Lett. 

51, 1957 (2016) 

87. S. Isaacs, F. Placido, I. Abdulhalim, Investigation of liquid crystal fabry perot tunable filters: 

Design, fabrication and polarization independence. Appl. Opt. 53, H91–H101 (2014) 

88. D.C. Zografopoulos, R. Asquini, E.E. Kriezis, A. d’Alessandroa, R. Beccherelli, Guided-

wave liquid-crystal photonics. Lab Chip 12, 3598–3610 (2012) 

89. I. Abdulhalim, Anisotropic layers in waveguides for mode tuning and tunable filtering, in 

Proceedings SPIE 6135, Liquid Crystal Materials, Devices, and Applications XI, 61350R, 

(2006). https://doi.org/10.1117/12.660572 

90. E.P. Pozhidaev, V. Chigrinov, A. Murauski, V. Molkin, D. Tao, H.S. Kwok, Vshaped electro-

optical mode based on deformed-helix ferroelectric liquid crystal with subwavelength pitch. 

J. SID 5, 273 (2012)


 10754 11870 a 10754 11870
a
 
http://doi.org/10.1063/1.1625114

 13990 14084 a 13990 14084 a
 
http://doi.org/10.1063/1.3564896

 32220 16298 a 32220
16298 a
 
http://doi.org/10.1002/adma.200400639

 16342 25153 a 16342 25153
a
 
http://doi.org/10.1080/02678292.2018.1502822

 16499 34009 a 16499
34009 a
 
http://doi.org/10.1063/1.1852720

 2887 53934 a 2887 53934 a
 
http://doi.org/10.1117/12.660572


126 M. Abu Aisheh et al.

91. E.P. Pozhidaev, V.V. Vashchenko, V.V. Mikhailenko, A.I. Krivoshey, V.A. Barbashov, L. Shi, 

A.K. Srivastava, V.G. Chigrinov, H.S. Kwok, Ultrashort helix pitch antiferroelectric liquid 

crystals based on chiral esters of terphenyldicarboxylic acid. J. Mat. Chem. C 4, 10339e10346 

(2016) 

92. I. Abdulhalim, G. Moddel, Switching behavior and electro-optic response due to the soft 

mode ferroelectric effect in chiral Smectic a liquid crystals. Liq. Crys. 9(4), 493 (1991) 

93. I. Abdulhalim, Highly promising electrooptic material: Distorted helix ferroelectric liquid 

crystal with a specific tilt angle. Appl. Phys. Lett. 101, 141903 (5pp) (2012) 

94. E.P. Pozhidaev, A.D. Kiselev, A.K. Srivastava, V.G. Chigrinov, H.-S. Kwok, M.V. Minchenko, 

Orientational Kerr effect and phase modulation of light in deformed-helix ferroelectric liquid 

crystals with subwavelength pitch. Phys. Rev. E 87, 052502 (2013) 

95. A.K. Srivastava, E.P. Pozhidaev, V.G. Chigrinov, H.S. Kwok, Vertically aligned ferroelectric 

liquid crystals with high Kerr constant for field sequential color displays. Mol. Liq. 295, 

111054 (2019) 

96. I. Abdulhalim, G. Moddel, Optically and electrically controlled light modulation and color 

switching using helix Distorsion of ferroelectric liquid crystals. Mol. Cryst. Liq. Cryst. 200, 

79 (1991) 

97. K. D’havé, P. Rudquist, S.T. Lagerwall, H. Pauwels, W. Drzewinski, R. Dabrowski, Solution 

of the dark state problem in antiferroelectric liquid crystal displays. Appl. Phys. Lett. 76, 

3528–3520 (2000) 

98. P. Rudquist, Orthoconic antiferroelectric liquid crystals. Liq. Cryst. 40, 1678–1697 (2013) 

99. D. Engström, J. Per Rudquist, S. Bengtsson, Galt three level phase- modulator based on 

orthoconic antiferroelectric liquid crystals. Opt. Lett. 31, 3158–3160 (2006) 

100. I. Abdulhalim, Continuous phase-only or amplitude light modulation using ferroelectric 

liquid crystals with fixed boundary orientations. Optic. Communi. 108, 219 (1994) 

101. S. Garoff, R.B. Meyer, Electroclinic effect at the A-C phase change ion a chiral smectic liquid 

crystal. Phys. Rev. Lett. 38, 848 (1977) 

102. I. Abdulhalim, G. Moddel, K.M. Johnson, High speed analog spatial light modulator using an 

a-Si: H photosensor and an electroclinic liquid crystal. Appl. Phys. Lett. 55, 1603 (1989) 

103. N.A. Clark, T. Bellini, R.F. Shao, D. Coleman, S. Bardon, D.R. Link, J.E. Maclennan, X.H. 

Chen, M.D. Wand, D.M. Walba, P. Rudquist, S.T. Lagerwall, Electro-optic characteristics of 

de Vries tilted smectic liquid crystals: Analog behavior in the smectic A(*) and smectic C-* 

phases. Appl. Phys. Lett. 80, 4097 (2002) 

104. P. Rudquist, M. Osipov, F. Giesselmann, On the orientational distribution functions in de 

Vries-type smectic liquid crystals. Liq. Cryst. 45, 2097–2108 (2019) 

105. M. Gelbaor, M. Klebanov, V. Lyubin, I. Abdulhalim, Photoinduced permanent alignment of 

liquid crystal on nanostructured chalcogenide thin film. Appl.Phys.Lett. 98, 071909 (2011) 

106. I. Abdulhalim, M. Gelbaor, M. Klebanov, V. Lyubin, Photoinduced phenomena in nano-

dimensional glassy As2S3 films. Opt. Mater. Express 1, 1192–1201 (2011) 

107. M.G. Kirzhner, T.A. Kumar, A. Chaudhary, M. Klebanov, I. Abdulhalim, Polar anchoring 

energy measurement of photoaligned nematic liquid crystal on nanodimensional chalcogenide 

glass films. J. Mol. Liq. 267, 182–186 (2018) 

108. A.K. Tatipamula, M.G. Kirzhner, A. Chaudhary, M. Klebanov, I. Abdulhalim, Electro-Optical 

properties of photoaligned Liquid Crystal cells prepared with obliquely irradiated Chalco-

genide glasses. Mol. Liq. 349, 118087 (2022). https://doi.org/10.1016/j.molliq.2021.118087 

109. A. Solodar, A. Cerkauskaite, R. Drevinskas, P.G. Kazansky, I. Abdulhalim, Ultrafast laser 

induced nanostructured ITO for liquid crystal alignment and higher transparency electrodes. 

Appl. Phys. Lett. 113, 081603 (2018) Also in arXiv:1802.09757 [physics.optics] 

110. I. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, P.G. Kazansky, Form-birefringence 

in ITO thin films engineered by ultrafast laser nanostructuring. ACS Photonics 4, 2944–2951 

(2017) 

111. K. Takatoh, Alignment Technologies and Applications of Liquid Crystal Devices (Taylor & 

Francis, London/New York, 2005)


 17522 48400 a 17522
48400 a
 
http://doi.org/10.1016/j.molliq.2021.118087

 17205 51720 a 17205
51720 a
 
https://arxiv.org/abs/1802.09757


Photonic Metamaterials for Light Modulation, Energy Saving, and Sensing Applications 127

112. D. Wu, Y. Liu, Z. Xu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Li, R. Ma, J. Zhang, H. Ye, Numerical  

study of the wide-angle polarization-independent ultra-broadband efficient selective solar 

absorber in the entire solar spectrum. RRL Solar 1(7), 1700049 (2017) 

113. Y. Cui, K.H. Fung, J. Xu, H. Ma, Y. Jin, S. He, N.X. Fang, Ultrabroadband light absorption 

by a sawtooth anisotropic metamaterial slab. Nano Lett. 12(3), 1443–1447 (2012) 

114. A. Tittl, M.G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, H. Giessen, 

Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect 

absorbers: Impedance matching and disorder effects. ACS Nano 8(10), 10885–10892 (2014) 

115. Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, W. Yu, Metamaterial-based two-dimensional 

Plasmonic subwavelength structures offer the broadest waveband light harvesting. Adv. Opt. 

Mater. 1(1), 43–49 (2013) 

116. P. Feng, W.D. Li, W. Zhang, Dispersion engineering of plasmonic nanocomposite for ultrathin 

broadband optical absorber. Opt. Express 23(3), 2328–2338 (2015) 

117. Z. Wang, Y. Wei, C. Zhang, Flexible broadband absorber for solar energy harvesting. 

Plasmonics 19, 215–225 (2024) 

118. Y. Yuan, C. Dong, J. Gu, Q. Liu, J. Xu, C. Zhou, G. Song, W. Chen, L. Yao, D. Zhang, A 

scalable Nickel–cellulose hybrid metamaterial with broadband light absorption for efficient 

solar distillation. Adv. Mater. 32, 1907975 (2020) 

119. L. Zhou, Y. Tan, J. Wang, et al., 3D self-assembly of aluminium nanoparticles for plasmon-

enhanced solar desalination. Nature Photon 10, 393–398 (2016) 

120. C.Y. Chang, H.T. Lin, M.S. Lai, T.Y. Shieh, C.C. Peng, M.H. Shih, Y.C. Tung, Flexible 

localized surface plasmon resonance sensor with metal-insulator-metal nanodisks on PDMS 

substrate. Sci Rep. 8(1), 11812 (2018) 

121. J.K. Behera, K. Liu, M. Liana, T. Cao, A reconfigurable hyperbolic metamaterial perfect 

absorber. Nanoscale Adv. 3, 1758–1766 (2021) 

122. P. Shekhar, J. Atkinson, Z. Jacob, Hyperbolic metamaterials: Fundamentals and applications. 

Nano Convergence 1, 14 (2014) 

123. D. Lee, S. So, H. Guangwei, M. Kim, T. Badloe, H. Cho, J. Kim, H. Kim, C.-W. Qiu, J. 

Rho, Hyperbolic metamaterials: Fusing artificial structures to natural 2D materials. eLight 2, 

1 (2022) 

124. W. Pinghui, Z. Chen, H. Jile, C. Zhang, X. Danyang, L. Lv, An infrared perfect absorber 

based on metal-dielectric-metal multi-layer films with nanocircle holes arrays. Results Phys. 

16, 102952 (2020) 

125. W. Dong, C. Liu, Y. Liu, X. Zenghui, Y. Zhongyuan, Y. Li, L. Chen, R. Ma, J. Zhanga, 

H. Ye, Numerical study of a wide-angle polarization-independent ultra-broadband efficient 

selective metamaterial absorber for near-ideal solar thermal energy conversion. RSC Adv. 

8(38), 21054–21064 (2018) 

126. F. Zhou, F. Qin, Z. Yi, W. Yao, Z. Liu, X. Wu, P. Wu, Ultra-wideband and wide-angle perfect 

solar energy absorber based on Ti nanorings surface plasmon resonance. Phys. Chem. Chem. 

Phys. 23, 17041–17048 (2021) 

127. Z. Wang, Z. Liu, G. Duan, L. Fang, H. Duan, Ultrahigh broadband absorption in metamaterials 

with electric and magnetic polaritons enabled by multiple materials. Int. J. Heat Mass Transf. 

185, 122355 (2022) 

128. Y.I. Abdulkarim, A. Mohanty, O.P. Acharya, B. Abppasani, M.S. Khan, S.K. Mohapatra, F.F. 

Muhammadsharif, J. Dong, A review on metamaterial absorbers: Microwave to optical. Front. 

Phys. 10, 893791 (2022) 

129. L. Zhou, Y. Tan, J. Wang, et al., 3D self-assembly of aluminium nanoparticles for plasmon-

enhanced solar desalination. Nat. Photonics 10, 393–398 (2016) 

130. C.K. Amaljith, I. Abdulhalim, Metamaterial devices for tunability and energy management in 

the SWIR region, in Proceedings Volume PC12990, Metamaterials XIV; PC129901U, (2024) 

131. I. Abdulhalim, M. Zourob, A. Lakhtakia, Surface plasmon resonance for biosens-

ing: A mini-review. Electromagnetics 28(3), 214–242 (2008). https://doi.org/10.1080/ 

02726340801921650


 25964 56148 a 25964 56148
a
 
http://doi.org/10.1080/02726340801921650


128 M. Abu Aisheh et al.

132. S. Balbinot, A.M. Srivastav, J. Vidic, I. Abdulhalim, M. Manzano, Plasmonic biosensors for 

food control. Trends Food Sci. Technol. 111, 128–140 (2021) 

133. I. Del Villar et al., Optical sensors based on lossy-mode resonances. Sensors Actuators B 

Chem. 240, 174–185 (2017). https://doi.org/10.1016/j.snb.2016.08.126 

134. S.P. Usha, A.M. Shrivastav, B.D. Gupta, A contemporary approach for design and characteri-

zation of fiber-optic-cortisol sensor tailoring LMR and ZnO/PPY molecularly imprinted film. 

Biosens. Bioelectron. 87 (2017). https://doi.org/10.1016/j.bios.2016.08.040 

135. Y. Lee, S.J. Kim, H. Park, B. Lee, Metamaterials and metasurfaces for sensor applications. 

Sensors (Switzerland) 17(8) (2017). https://doi.org/10.3390/s17081726 

136. S. Jahani, Z. Jacob, All-dielectric metamaterials. Nat. Nanotechnol. 11(1), 23–36 (2016). 

https://doi.org/10.1038/nnano.2015.304 
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The Role of Maxwell’s Equations 
in Design of Metamaterials and in 3D 
Imaging 

Partha P. Banerjee, Austin M. Scott, and Guo Chen 

1 Introduction 

This chapter summarizes two applications of Maxwell’s equations which we have 

been actively pursuing in our Holography and Metamaterials Lab over the last few 

years. One area of interest is the design of metamaterials with negative index for 

subwavelength imaging, as well as the design of metamaterials for use as bandpass 

filters with given center wavelength and cutoffs. The other area is 3D imaging using 

interferometric (holographic) and non-interferometric techniques for applications 

in the 3D mapping of topography of surfaces, viz., cracks, deformations, and most 

recently fingermarks. 

Metamaterials, which are nano-engineered artificial structures, have shown 

potential as versatile platforms for achieving various functions, including sensing 

[1], waveguiding [2], and sub-diffraction imaging [3]. A typical application is the 

nano-scale metallo-dielectric (MD) bandpass filters, which have garnered significant 

interest due to their ability to achieve high miniaturization [4], flexible and 

broadband transmission [5], and sharp-edge profiles [ 6]. 

To analyze the optical properties of MD structures, one important method is to 

use the dispersion relation for electromagnetic (EM) waves through the periodic MD 

structure. Just as in quantum mechanics, the dispersion relation provides valuable 

insights into the passbands and stopbands within a crystal lattice [7], the dispersion 

relation for EM waves offers the potential to engineer the complex refractive 

index of a proposed structure [8], and enables control over the group velocity of 

propagating waves [9]. It will be seen that this topological dispersion relation, 

arising from the structure of the metamaterial, suitably modified to include the 
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material dispersion relation of the metal and the dielectric, can adequately describe 

the frequency response of the finite MD filter. 

Digital holography (DH) is an interferometric technique of obtaining phase 

information whereby holograms are recorded on a CCD or CMOS detector and 

numerically reconstructed using a computer [10]. Allowing both 3D and quantitative 

phase images of objects to be recovered, DH has been successfully employed 

in non-destructive testing and metrology [11], microscopy [12], 3D imaging of 

biological samples [13], 3D image encryption [14], 3D object recognition [15], and 

3D tomographic imaging [16], to name a few. Various system architectures exist 

for DH, such as phase-shifting DH [17] where the object and reference beams are 

nominally copropagating to the image sensor, and multiple holograms are recorded 

with a phase shift applied to the reference beam between each recording, and off-

axis DH [18] where a slight angle is introduced between the object and reference 

beams as they propagate to the image sensor. Reconstruction of the digital hologram 

is done using the law of Fresnel propagation, either in the space or spatial frequency 

domain, which is also derived from the Helmholtz equation. 

Regarding reconstruction, the phase reconstructed from the digital hologram is 

a wrapped phase, meaning it must be unwrapped to obtain the true phase. This can 

be done using a phase unwrapping algorithm such as the Phase Unwrapping Max-

flow Algorithm, or PUMA [ 19]. An alternative is using the transport of intensity 

technique, which is a non-interferometric method for phase retrieval capable of 

recovering the true phase of an object without the need for phase unwrapping 

[20]. The transport of intensity equation (TIE) is also derived from the Helmholtz 

equation under the paraxial approximation [21, 22], and is a deterministic phase 

retrieval method requiring a minimum of two axially separated intensity images. 

Multiple intensity images are required to estimate the axial intensity derivative using 

finite difference methods. 

2 Metallo-Dielectric Structures: Metamaterials for Optical 

Filters 

Previous research has successfully derived the dispersion relations for periodic one-

dimensional (1D) MD structures [23], where the presence of metallic films intro-

duces unique optical properties distinct from straightforward metal absorption [24]. 

In related research on bandpass filters, the potential of engineering the reflectance 

spectra using multilayer structures has been discussed, including dielectric layer 

structures with graphene monolayers [25] and plasma photonic crystal structures 

[26]. Among these works, Qiao et al. [27] pointed out that using photonic crystal 

layers along with highly absorptive metal films can realize one or multiple highly 

reflected peaks, even achieving enhanced transmission in narrowband regions. The 

introduction of the metal offers great flexibility in designing essential reflection 

or transmission optical devices in the visible and near-infrared ranges. Therefore,
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Fig. 1 Schematic of a 1D periodic MD structure, where the symbol “M” corresponds to a metal 

layer with a thickness of zm, while “D” represents a dielectric layer with a thickness of zd . The  

periodic MD structure can be considered as an extended repetition of the dark blue block, also 

referred to as the “super-period”
l

zd

2
; zm; zd ; zm; zd

2

l

.. The significance of the super-period is 

explained in Ref. [28], and multiple super-periods are expressed in
l

zd

2
; zm; zd ; zm; zd

2

lq
., with 

q refers to the number of super-periods 

it is crucial to combine the studies on MD structure dispersion relations with the 

engineering of MD structure transmittance and reflectance. 

None of the work mentioned above uses the dispersion relation in an infinite peri-

odic structure to predict the transmittance features of a finite multilayer structure. 

Additionally, many prior studies have employed the transfer matrix method (TMM) 

to find the dispersion relation [ 23–25, 27]. We have suggested an alternative and 

perhaps more fundamental approach that involves solving the Helmholtz equation 

with appropriate boundary conditions. By employing Bloch’s theorem to express 

the periodicity of solutions, this method parallels the quantum mechanical analysis 

of a 1D periodic potential barrier. This technique reveals the intrinsic relationship 

between layer thickness, material properties, and the ultimate optical characteristics 

of an infinite periodic structure, such as transmission characteristics, in a concise 

and efficient manner. 

Consider an MD structure with infinite extension along the z-direction. This 

structure consists of a dielectric layer within the range z ∈ [0, zd) (designated as 

region 1) and a metal layer within the range z ∈ [zd, zm) (denoted as region 2), as 

illustrated in Fig. 1. The adjacent metal layer within the range z ∈ [−zm, 0) is labeled 

as region 2
'
. Both the dielectric and metal layers extend periodically on both sides 

of regions 2 and 2
'
. Assume for now that light propagates along the z-axis. 

As shown in Ref. [28], the exponential form of the dispersion relation for normal 

incidence takes the form 

.
1

8k1k2

l

(k1 + k2)
2
l

ej(k1zd+k2zm) + e−j(k1zd+k2zm)
l
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. − (k1 − k2)
2
l

ej(k1zd−k2zm) + e−j(k1zd−k2zm)
l l

. = 1

2

l

ejkeff(zd+zm) + e−jkeff(zd+zm)
l

. (1) 

Here, k1 and k2 represent the propagation constants in region 1 and 2 (2
'
), 

respectively, and are defined as k1,2 = ñ1,2k0 = √
er1,2k0 ., where k0 is the 

propagation constant in free-space, ñ1,2 . and er1, 2 refer to the complex refractive 

indices and relative permittivities, respectively, of the dielectric and metal layers. 

The complex refractive index can be represented as
∼
n = n − jk ., where the real part 

n corresponds to the refractive index, and the magnitude of the imaginary part is 

k, which is the absorption coefficient. Solving Eq. ( 1) enables the determination of 

keff . By defining keff = β − jα, the real part of the effective propagation constant 

β can be determined from Re(keff ), and the effective attenuation constant α can be 

obtained by taking − Im (keff ). It is important to note that for forward propagating 

waves, the value of α should be positive. Eq. (1) can be further simplified into its 

trigonometric form: 

. cos (k1zd) cos (k2zm) − k1
2 + k2

2

2k1k2
sin (k1zd) sin (k2zm) = cos (keff (zd + zm)) .

(2) 

Typically, for most wavelengths of interest, the absorption coefficient of metals, 

km, is dominant compared to the refractive index (km > nm). Conversely, the 

absorption coefficient of dielectrics is generally close to zero ( kd < nd). To simplify 

the analysis, it can be assumed that for a metal, ñ2 = −jkm ., and for a dielectric, 

ñ1 = nd .. With such an assumption, which will be called “ideal case” throughout, 

Eq. (2) can now be expressed as 

. cos (ndk0zd) cos h (kmk0zm) +
ll

km
2 − nd

2

2ndkm

l

sin (ndk0zd) sin h (kmk0zm)

= cos (keff (zd + zm)) , (3) 

which is the dispersion relation in the ideal case. The RHS of the equation is a 

cosine function, which takes values in the range [−1, 1]. This constrains the values 

of the left-hand side (LHS) of the equation. Specifically, LHS ∈[−1, 1] defines 

the passbands, while LHS ∈(−∞, −1) ∪ (1, ∞) defines the stopbands for a MD 

structure. By setting the LHS of the equation to zero (LHS =0), we can determine 

the center wavelength. Additionally, the cutoff wavelengths can be determined by 

setting LHS = ±  1. With the given thicknesses zd, zm, and material properties nd, km, 

these featured wavelengths can be determined directly, and important information 

about the optical characteristics of the MD structure can be obtained accordingly. 

Details of this along with various examples of different metals and dielectrics have
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been shown in Ref. [28] along with the relationship between predictions from the 

dispersion relation with the transmittance of a finite MD structure, computed using 

TMM. It has been also shown that the LHS of the dispersion relation for the ideal 

case is close to the LHS of the real part of the dispersion relation for the actual case 

(nm /= 0, kd ≈ 0), so that inferences about the center wavelength and cutoffs can be 

adequately ascertained from the plots for the ideal case (nm = 0, kd = 0). 

The dispersion relations for normal incidence represent the simplest and most 

unique case. TE and TM polarized waves exhibit identical behavior. For oblique 

incidence, we first consider TE polarization, where we assume the electric field is 

in the y-z plane. We define the unit vectors in the x, y, and z directions as ̂ax ., ây,. 

and âz ., respectively. When considering oblique incident TE waves and accounting 

for both forward and backward propagating components, the general solutions in 

regions 1, 2
'
, and 2 are given by: 

.E1 =
l

Ae−jk1zz + Bejk1zz
l

e−jk1xx ây, (4) 

.E2' =
l

Ce−jk2zz + Dejk2zz
l

e−jk2xx ây, (5) 

.E2 = E2' (z − (zd + zm)) exp
l

−jkzeff (zd + zm)
l

. (6) 

where E1, E2, and E2' represent the electric fields in regions 1, 2
'
, and 2, respec-

tively. k1, 2x and k1, 2z correspond to the x and z components of k1, 2, respectively, 

while kzeff represents the z component of keff . Starting from Maxwell’s equations, 

the boundary conditions can be derived, and are expressed as follows: 

.Ey1(0) = Ey2'(0),
dEy1(0)

dz
=

dEy2'(0)

dz
; (7a) 

.Ey1 (zd) = Ey2' (zd) ,
dEy1 (zd)

dz
=

dEy2' (zd)

dz
. (7b) 

Here, Ey1, 2' represent the y-components of the electric field E1,2' . Similarly, 

the subscripts x and z denote the x- and z-components, respectively. After some 

extensive algebra, which involves the use of the boundary conditions and setting the 

determinant of the ensuing matrix to zero, the dispersion relation becomes 

. cos (k1zzd) cos (k2zzm)−
k2

1z+k2
2z

2k1zk2z

sin (k1zzd) sin (k2zzm) = cos (kzeff (zd + zm)) ,

(8) 

which has the same form as the dispersion relation for normal incidence, as in Eq. 

(2), except that the propagation constants are now replaced with their corresponding 

z components.
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Similarly, when considering TM polarization, the polarization is in the x-z plane. 

Eqs. (4–6) undergo the following changes: 

. E1 =
l

a
l

cos θ1âx − sin θ1âz

l

e−jk1zz + b
l

cos θ1âx + sin θ1âz

l

ejk1zz
l

e−jk1xx,

(9) 

. E2' =
l

c
l

cos θ2âx − sin θ2âz

l

e−jk1zz + d
l

cos θ2âx + sin θ2âz

l

ejk2zz
l

e−jk2xx,

(10) 

.E2 = E2' (z − (zd + zm)) exp (−jkzeff (zd + zm)) , (11) 

where θ1, 2 represent the angles between the propagation direction and the z-axis 

in regions 1 and 2
'
(2), respectively. It is important to note that the value of θ1, 2 

can be mathematically complex in this context. We can also use exponential form 

to express the general solutions to avoid the use of complex angles. Starting again 

from Maxwell’s equations, the boundary conditions can be derived as follows: 

.Dz1(0) = Dz2'(0), Ex1(0) = Ex2'(0); (12a) 

.Dz1 (zd) = Dz2 (zd) , Ex1 (zd) = Ex2 (zd) . (12b) 

Once again as before, by setting the determinant of the matrix to zero and 

utilizing Snell’s law (k1 sin θ1 = k2 sin θ2) as well as the relation k2
1,2 = εr1,2k

2
0 =

k2
1,2x+k2

1,2z ., one can derive the dispersion relation for oblique incident TM polarized 

waves as 

. cos (k1zzd) cos (k2zzm) −
ε2
r2k

2
1z + ε2

r1k
2
2z

2εr1εr2k1zk2z

sin (k1zzd) sin (k2zzm)

= cos (kzeff (zd + zm)) . (13) 

It is worth noting that the x component of the propagation constant, kx, remains 

unchanged during propagation according to Snell’s law. For a finite multilayer 

structure, if the incident angle in air θ0 is given, the unchanged x component can 

be expressed as kx = k1x = k2x = k0 sin θ0. After solving for the z component kzeff 

using Eq. (8) or Eq. (13), the effective propagation constant can be calculated as 

k2
eff = k2

x +k2
zeff .. Through some straightforward algebra, it can be verified that when 

the incident angle is zero, implying normal incidence, both Eq. (8) and Eq. (13) are  

equivalent to Eq. (2).
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2.1 Frequency Response of MD Filters 

As discussed above, the dispersion relation allows us to determine the center 

wavelength and cutoff wavelengths by setting LHS =0 and LHS = ±  1. The 

accuracy of this method can be verified using TMM. Figure 2 displays the agreement 

between the featured wavelengths obtained from the LHS of the ideal dispersion 

relation and those obtained from the TMM. A one-super-period MD structure in 

ideal case is considered with Ag as the metal and TiO2 as the dielectric, with layer 

thicknesses of zd = 100 nm and zm = 40 nm. Even when using only one super-

period for the TMM simulation, we can observe a good match between the featured 

wavelengths of the infinite structure and the finite structure. The predicted center 

wavelength precisely corresponds to the peak position, and the cutoff wavelengths 

indicate the edges of the passband, thereby defining the bandwidth. It is also worth 

noting that with ideal materials, the maximum transmittance reaches one, indicating 

a lossless structure. 

In our prior work [28, 29, 32], we have demonstrated that increasing the number 

of super-periods does not change the bandwidth or the center wavelength (which 

represents the position of the central peak). However, with an increase in the number 

of super-periods, there is a noticeable increase in oscillations across the passband, 

which occur due to the Fabry-Perot effect. As shown in Ref. [28], an increase in 

the number of super-periods results in a longer overall length, which decreases 

the spacing between each peak, leading to more oscillation peaks within the same 

passband. 

Furthermore, MD layers are typically deposited on a substrate with a much 

larger thickness (on the millimeter scale) compared to the MD layers (which are 

Fig. 2 (a) LHS of the dispersion relation of an infinite multilayers periodic structure in 

ideal case. (b) Transmittance spectrum plotted TMM using one super-period finite structure 
l

zd

2
; zm; zd ; zm; zd

2

l

.. Thicknesses zd = 100 nm, zm = 40 nm, and ideal materials are considered 

(nm = 0, kd = 0). The metal is Ag and the dielectric is TiO2, and the refractive index parameters 

of them are obtained from published values [30, 31]
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on the micron scale). The existence of the substrate can lead to even more dense 

oscillations that are undetectable using a spectrometer. 

Instead of the number of super-periods, the material properties and layer 

thicknesses have a significant impact on the dispersion relation and, consequently, 

the featured wavelengths. According to heuristic formulas presented in Ref. [28, 

29], the center wavelength is approximately proportional to nd. Moreover, the values 

of km (and more importantly dkm/dλ) can influence both the center and the cutoff 

wavelengths. By controlling the variables mathematically, it is shown that km should 

have a more pronounced effect on the cutoff wavelengths, while nm primarily 

influences transmittance, as outlined in Ref. [ 32]. Results in Ref. [28] involving 

different metals (Ag, Au, Al) with constant layer thicknesses also revealed that 

metals with larger km values (such as Al) have smaller bandwidths and shorter 

center wavelengths, whereas metals with smaller km values (like Au) have larger 

bandwidths and longer center wavelengths. 

Similar comparisons can be done for oblique incidence with TE and TM 

polarizations. As shown in Fig. 3, two super-period MD structures in the ideal 

case is considered for oblique incidence, with Ag as the metal and TiO2 as the 

dielectric, with layer thicknesses of zd = 100 nm and zm = 20 nm. The characteristic 

wavelengths still align with the TMM transmittance results, even when considering 

different incident angles and different polarizations. For normal incidence, the 

simulation results are the same for both TE and TM polarizations, as expected. 

There are only small changes in the center and cutoff wavelengths of the main 

passband (in the visible spectrum) with increasing incidence angle. Figure 3a shows 

that for TE waves the LHS of the dispersion shifts slightly with increasing angles, 

while the shape generally remains the same. While for TM waves, as shown in Fig. 

3c, we can hardly observe the shift, however the shape of the LHS will change when 

the wavelength is below 350 nm. 

The main difference lies in the extent of transmittance oscillations within 

a passband. For TM waves, as shown in Fig. 3d, in the main passband, the 

transmittance values exhibit more severe oscillations (with a smaller ratio of the 

minimum over the maximum) as the incident angle increases. Conversely, the lower 

sideband displays less severe oscillations with increasing angle. This indicates that 

the two passbands can exhibit distinctly different behaviors as the incident angle 

varies. It is evident that the oscillations become more pronounced in both passbands, 

and the transmittance peak decreases significantly for the sideband with a large 

incident angle. 

3 Interferometric and Non-Interferometric Methods for 

Phase Retrieval 

A hologram is simply the interference pattern between the light reflected from or 

transmitted through an object and a reference beam. Assuming the object field is
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Fig. 3 LHS of the dispersion relations of an infinite MD structure using ( a) TE waves and 

(b) TM waves. TMM-simulated transmittance spectra of a two super-periods MD structure 
l

zd

2
; zm; zd ; zm; zd

2

l2
. for (c) TE waves and (d) TM waves. Various incidence angles are used, 

and the materials are assumed to be ideal (nm = 0, kd = 0). Thicknesses of dielectric and metal are 

zd = 100 nm and zm = 20 nm, respectively, with Ag as the metal (using data from Wu et al. [30]) 

and TiO2 as the dielectric (using data from Siefke et al. [33]) 

Eo(x, y) and the reference field is a plane wave simply written as ER, the intensity 

profile of the interference pattern, also referred to as the hologram function can be 

written as 

.h (x, y) ∝
l

lE'
o (x, y) + ER

l

l

2
, (14) 

where E'
o (x, y). is the Fresnel propagated field to the recording (CCD) plane, 

located at a distance, say, d, from the object plane. 

Intensity and phase reconstructions of the digital hologram are accomplished 

numerically using Fresnel propagation as follows. If locations at the hologram 

plane and the reconstruction plane are denoted by (x
'
, y

'
) and (x, y), respectively, 

the reconstructed optical field in the reconstruction plane can be written using the 

Fresnel diffraction formula. The Fresnel diffraction formula for paraxial propagation 

can be derived starting from the paraxial wave equation, which is derived in turn
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from the Helmholtz equation. Solution of the paraxial wave equation can be readily 

done using Fourier transforms and yields the transfer function of propagation 
∼
H

l

kx, ky; z
l

.. The inverse transform is the impulse response for propagation 
∼
h (x, y; z). and is equivalent to the radiation from a point source. The diffracted 

field, for instance, E'
o (x, y). above is the convolution of the original field Eo(x, y) 

and the impulse response. This integral is useful in calculating the propagated field 

from the hologram illuminated by a reading beam, and is given by the integral 

. E (x, y) = j

λd
exp

l

−j
2π

λ
d

l

exp
l

−j
π

λd

l

x2 + y2
ll

l ∞

−∞

l ∞

−∞
h

l

x', y'lE∗
R

. × exp
l

−j
π

λd

l

x'2 + y'2
ll

exp

l

j
2π

λd

l

xx' + yy'l
l

dx'dy', (15) 

where λ is the illumination wavelength in free space and E∗
R . is the complex 

conjugate of the optical field of the reference beam used when recording the 

hologram. The integral on the right side of Eq. (15) can be recognized as the inverse 

Fourier transform F
−1 {•}.. Accordingly, Eq. (15) can be re-expressed as 

. E (x, y) = j

λd
exp

l

−j
2π

λ
d

l

exp
l

−j
π

λd

l

x2 + y2
ll

. × F
−1

l

E∗
R

l

x', y'l h
l

x', y'l exp
l

j
π

λd

l

x'2 + y'2
lll

. (16) 

The intensity of the reconstructed hologram is given by 

.I (x, y) = |E (x, y)|2, (17) 

and the phase by 

.φ (x, y) = tan−1

l

Im [E (x, y)]

Re [E (x, y)]

l

. (18) 

Note that in Eq. (18), the use of the inverse tangent function implies that 

the phase calculated is modulo 2π , and therefore, wrapped. There are commonly 

used techniques, e.g., PUMA that perform phase unwrapping to yield the exact 

phase, except when there are large phase excursions with large gradients [34]. 

Another technique to find the unwrapped phase is through the use of the transport 

of intensity equation (TIE), more of which is discussed below. Here, defocused 

image intensities are computed around the reconstruction plane and used to find 

the unwrapped phase directly, since it does not make use of the inverse tangent 

function. Alternatively, a multiwavelength technique can be used, where holograms



The Role of Maxwell’s Equations in Design of Metamaterials and in 3D Imaging 143

are recorded and reconstructed using dual wavelengths λ = λ1 and λ = λ2. The  

reconstructed wrapped phases are then subtracted to give an equivalent phase, which 

now to the synthetic wavelength 

.A = λ1λ2

|λ1 − λ2|
. (19) 

Clearly, A can be very large or very small. Large synthetic wavelengths of 

the order of 50 cm can be achieved by using two wavelengths, one of which 

is acousto-optically generated [35]. Very small synthetic wavelengths, generated 

by using widely different wavelengths, have been used for mapping surfaces of 

semiconductors such as silicon chips and shown to have resolution in the order of 

tens of nanometers [36]. For the example of 3D topography of fingermarks, we have 

used λ1 = 514.5 nm and λ2 = 457.9 nm, thereby generating A = 4.1624 µm. The 

use of two wavelengths allows for the flexibility to adjust the synthetic wavelength 

for a wide range of depths D of the object; in our experiments, a synthetic 

wavelength of around 4 µm allowed for good discrimination of the level-3 details 

in the topograms of fingerprints. 

In what follows, we describe a technique, which is nonholographic and simply 

relies on imaging. This is, after all, the concept behind TIE, mentioned above. The 

TIE is a partial differential equation (PDE) derived from the Helmholtz equation 

under the paraxial approximation and constitutes the conservation of energy of 

a propagating electromagnetic wave. Derived independently by Teague [21] and 

Banerjee et al. [22], the PDE is given by 

.∇2
⊥φ (x, y; z = z0) + k0

I (x, y; z = z0)

∂I (x, y; z = z0)

∂z
≈ 0, (20) 

where ∇2
⊥

. denotes the Laplacian operator in the transverse dimensions x and y, 

φ(x, y; z = z0) and I(x, y; z = z0) are, respectively, the phase and intensity of the 

optical field at the image plane z0, and k0 = 2π /λ where λ is the wavelength. For 

phase objects it can generally be assumed that the intensity near the image plane is 

effectively constant, which allows Eq. (20) to be solved for the phase at the image 

plane, using the relation 

. φ (x, y; z = z0) = F
−1

l

1

k2
x + k2

y

F

l

k0

I (x, y; z = z0)

∂I (x, y; z = z0)

∂z

l

l

,

(21) 

where F . and F
−1

. denote the forward and inverse Fourier transform operators, 

and kx and ky are spatial frequencies in the x and y dimensions, respectively. 

Implementation of the TIE for phase retrieval requires a minimum of two intensity 

images symmetrically defocused about the (in-focus) image plane, taken here to be
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at z = z0 = 0. Taking the defocusing distance to be ±∆z, the two defocused intensity 

images I(x, y; z = z0 ± ∆z) = I±∆z are used to estimate the derivative of the image-

plane intensity in Eq. (21) by a finite difference method, as well as the image plane 

intensity using the average of the defocused intensities. 

3.1 Applications to 3D Fingermark Mapping 

Visualization of fingermarks is an important aspect of criminal investigations for 

the identification of individuals present at the scene. Methods for developing 

and analyzing fingermarks are numerous, and choosing the optimal one is usu-

ally dependent on the underlying surface and environmental conditions including 

temperature, humidity, and aging time. For those fingermarks proving difficult or 

impossible to develop with traditional methods like dusting powders or chemical 

reactions, columnar thin films (CTFs) deposited onto the sebaceous residue have 

been shown to preserve the 3D profile of the fingermark with high fidelity [37, 38]. 

Subsequent analysis of the CTF-coated fingermark is necessary for visualization 

and characterization of uniquely identifying details, which can be done using phase 

imaging techniques. Digital holography (DH) [39] and a combination of DH and 

the TIE [40] are phase imaging methods requiring the recording of one or more 

digital holograms followed by isolation of the object field and numerical back-

propagation to obtain the phase of the object, from which the 3D topogram can 

be reconstructed. Both DH and DH + TIE have been used to recover the topograms 

of CTF-coated fingermark samples, which are either transparent or nicely reflecting 

[40]. For nontransparent samples exhibiting strong scattering, however, recording 

of the digital hologram becomes quite difficult due to the rapid spatial scattering 

of the object beam after reflection from the sample. Additionally, using lenses and 

recording the digital hologram very close to the object plane increases the difficulty 

of separating the object information from the background light (dc) and twin image. 

Here, we propose using TIE alone to recover the 3D topogram of CTF-coated 

fingermark samples on opaque substrates that exhibit strong surface scattering. This 

approach requires a series of through-focus intensity images of the object, thus 

allowing the use of imaging optics to control the scattering, and, subsequently, 

enabling recovery of the 3D topogram. 

The setup used for the TIE-based phase retrieval is shown in Fig. 4a. Figure 4b, 

c show intensity images of a sample S2C2D2 (chalcogenide 1000 nm CTF-coated 

fingermark on brass aged for 7 days at 5 ◦F) taken at defocused planes z = ∓ Az, 

with Az = 10 µm, and Fig. 4d shows the recovered topogram. After acquiring the 

phase from the recorded intensity images using Eq. (21), residual phase curvature 

is removed and noise is reduced using MATLAB local functions “detrend” and 

“medfilt2,” respectively. The depth profile, and thus, the topogram is then calculated 

using hφ = φ0/k0. A single representative topogram is shown here as an example 

(Fig. 4d), however, many more have been recovered using DH, DH + TIE, and TIE.
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Fig. 4 (a) Schematic of experimental setup for TIE-based topography. (b) Intensity at plane 

z = − Az. (c) Intensity at plane z = Az. (d) recovered 3D topogram of the fingermark [ 41] 

4 Concluding Remarks 

This chapter summarizes selected work from our group in the area of metamaterials 

and 3D imaging using DH and TIE. As is readily seen, Maxwell’s equations and the 

resulting Helmholtz equation are indeed the backbone of the results presented. 

Incorporating the concept of the Fourier transform and the angular spectrum 

concept is useful in solving many of the problems regarding propagation of optical 

beams in various environments. For instance, the transfer function of propagation 

provides a convenient method to solve diffraction problems [42, 43]. An extension 

to this technique to analyze propagation of the longitudinal component of the optical 

field during beam propagation has been conveniently derived using the transfer 

function concept [44]. The concept of dispersion relations provides a convenient 

way to explore plane wave and beam propagation in negative index materials [45– 

48]. The eikonal equations in the presence of diffraction is the basis of TIE and TPE 

(transport of phase equation) [22, 43] and is useful in analyzing beam propagation in 

nonlinear systems. The transfer matrix method (TMM) and the Berreman method, 

also derived from the Helmholtz equation is useful in analyzing optical propagation 

through liquid crystals and metamaterials [49–51]. Maxwell’s equations are also 

used to analyze nonlinear self-organization in photorefractive materials [52–55]. 

Holographic interferometry and DH, all consequences of Maxwell’s equations 

and the Helmholtz equation, have been used by our group to determine object 

deformations in various scenarios [56–60]. 

The list of topics that can be handled by Maxwell’s equations is indeed endless. 

Maxwell’s equations have truly changed the world! 
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Appendix: Helmholtz Equation, Transfer Function for 

Propagation, Transport of Intensity 

The Helmholtz equation for the optical field phasor Ep follows from the wave 

equation for the real optical field E resulting from Maxwell’s equations. For a scalar 

optical field, it takes the form 

.∇2Ep + k0
2Ep = 0, (A1) 

Now writing Ep = Ee exp − jk0z, where Ee is called the envelope, and invoking 

the slowly varying approximation, the paraxial wave equation follows [42, 43]: 

.2jk0
∂Ee

∂z
= ∂2Ee

∂x2
+ ∂2Ee

∂y2
. (A2) 

Using Fourier transforms, this PDE can be solved to give the transfer function 

for propagation 

.Ĥ
l

kx, ky; z
l

= exp

l

j

2k0

l

kx
2 + ky

2
l

z

l

. (A3) 

The inverse transform of this is the transfer function for propagation given as 

.h (x, y; z) = Ixy
−1

l

H
l

kx, ky

ll

= jk0

2πz
exp

l

−jk0

l

x2 + y2
l

/2z
l

. (A4) 

Alternatively, the optical field paraxial wave equation can be decomposed into its 

magnitude and phase: 

.Ee =
√

Ie−jϕ . (A5) 

Substituting into (A2) and separating imaginary and real parts, the TIE and TPE 

are obtained [22, 43]: 

.
−→∇ ⊥.
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I
−→∇ ⊥ϕ

l

= −k0
∂I
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, (A6) 
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Nanophotonics Applications of Gradient 

Surface Electromagnetic Waves 

Igor I. Smolyaninov and Vera N. Smolyaninova 

1 Introduction 

Surface electromagnetic wave (SEW) solutions of macroscopic Maxwell equations, 

such as surface plasmon polaritons (SPP) at sharp metal-dielectric boundaries [1] 

and Zenneck waves at sharp boundaries between high-loss and low-loss dielectrics 

[2], have been known for some time. More recently, SEW solutions have also 

been discovered in low-loss [3] and even very high-loss [4, 5] gradient dielectric 

media, such as the surface of seawater and various underground sediment layers. 

This discovery was both surprising and practically useful, as these SEWs may be 

utilized in broadband underwater radio [6] and video [7] communication. Another 

potential application of this finding is in UV nanophotonics [8], as virtually all 

materials behave as very high-loss dielectrics at UV frequencies. Additionally, 

this result has broad fundamental physics implications, complementing recent 

observations of loss-enhanced transmission due to PT-symmetry in non-Hermitian 

optical systems [9]. 

Unfortunately, these newly discovered SEW solutions still suffer from relatively 

short propagation ranges. Although their propagation range is considerably longer 

than their wavelength, it remains short in practical terms, limiting their applications. 

The goal of this chapter is to extend the theoretical considerations in refs. [4, 5] 

to a more general case where a highly lossy gradient medium exhibits surface 

gradients of both its dielectric permittivity e(z) and its magnetic permeability μ(z), 
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Fig. 1 Gradient interface 

problem considered in this 

chapter. The dielectric 

permittivity ε(z) and the  

magnetic permeability μ(z) of  

the medium are continuous 

and depend only on z 

coordinate, which is 

illustrated schematically by 

halftones 

as illustrated in Fig. 1. We will demonstrate that novel lower-loss propagating 

surface wave solutions may be found in some of these situations. Potentially, these 

new results may be applied in practical underwater and underground communication 

systems, establishing broadband radio communication channels along the surfaces 

of rusty pipes deployed in underwater and underground oil and gas fields. The 

developed theory also has important implications in the field of metamaterial 

optics, where the negative effect of metamaterial losses on signal propagation 

remains a significant problem. The usefulness of the developed approach will be 

illustrated by several newly found examples of gradient geometries where the 

surface wave problem can be solved analytically. Finally, we will present several 

examples of practically useful novel surface wave geometries, ranging from radio 

communication underwater to UV nanophotonics. 

2 General Theoretical Framework 

Let us examine the solutions to the macroscopic Maxwell equations in a scenario 

where the dielectric permittivity and magnetic permeability of a medium vary with 

the z coordinate: ε = ε(z) = ε'(z) + iε''(z) and μ = μ(z) = μ'(z) + iμ''(z), as 

illustrated in Fig. 1. Both  ε = ε(z) and μ = μ(z) functions are assumed to be 

continuous and the effects of spatial dispersion are neglected. 

These functions are derived from experimental measurements. (Note that typical 

sources of spatial dispersion in electromagnetism include anisotropic material 

responses due to crystal structure or optical activity in solutions of chiral molecules. 

Spatial dispersion is also significant in collisional damping in plasmas. None of 

these factors are present in the experimental situations studied in our work). Under 

these conditions, the spatial variables in the Maxwell equations separate, and 

without loss of generality, we can assume electromagnetic mode propagation in 

the x direction, resulting in field dependencies proportional to ei(kx − ωt) (see also
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ideologically similar derivations in [4, 5]). The macroscopic Maxwell equations 

then straightforwardly lead to a wave equation 

. − ∇2−→E − −→∇
(

Ez

∂ε

ε∂z

)

=
ω2εμ

c2

−→
E +

(−→∇ μ
)

×

l−→∇ ×
−→
E

μ

l

(1) 

where Ez is the z component of electric field. For the TE polarization this wave 

equation may be written as 
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1
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) (
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)

(2) 

If an effective “wave function” Ey = ψμ1/2 is introduced, the wave Eq. (2) may be 

rewritten in the form of one-dimensional Schrodinger equation 
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+

l

−
ε(z)μ(z)ω2

c2
−

1

2

∂2μ

μ∂z2
+

3

4

(∂μ/∂z)

μ2

2
l

ψ = −
∂2ψ

∂z2
+ V ψ = −k2ψ

(3) 

On the other hand, for the TM polarization of greater interest to us, the wave 

equation may be written in the form of a similar one-dimensional Schrodinger 

equation 

. −
∂2ψ

∂z2
+

l

−
ε(z)μ(z)ω2

c2
−

1

2

∂2ε

ε∂z2
+

3

4

(∂ε/∂z)

ε2

2
l

ψ = −
∂2ψ

∂z2
+ V ψ = −k2ψ

(4) 

where the effective “wave function” Ez = ψ /ε1/2 has been introduced. In both Eqs. 3 

and 4, the  –k2 term serves as the effective energy in the corresponding Schrödinger 

equation. It is important to note that the continuity of Dz = ψε1/2 necessitates the 

continuity of ψ(z), provided that e(z) is continuous and ε = ε' + iε'' /= 0. 

The most intriguing result from refs. [4, 5] arose from examining the TM 

polarized solutions within a medium with an almost purely imaginary dielectric 

permittivity, ε(z) ≈ iε''(z) = iσ(z)/ε0ω, where ε0 is the dielectric permittivity of 

vacuum, e''e'' is very large, and the medium’s conductivity σ (z)σ (z) is given in  

practical SI units. Based on Eq. 4, the effective potential in this scenario can be 

written as 

.V (z) = −
iσμω

ε0c2
−

1

2

∂2σ

σ∂z2
+

3

4

(∂σ/∂z)

σ 2

2

(5)
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As observed in [4, 5], the second and third terms in Eq. 5 remain real even 

when ε” is very large, and they can become much larger than the first term if the 

medium’s conductivity changes rapidly enough near the surface as a function of z. 

When these terms dominate the first one, a propagating SEW solution may emerge 

in a highly lossy system. However, if μ is real, the first term in Eq. 5 (which equals 

Im(V)) limits the propagation length of such an SEW solution, except at very low 

frequencies. 

The key insight of the current work is that the SEW propagation length can be 

significantly enhanced if μ(z) also becomes an almost purely imaginary function 

(while the effective potential well described by Eq. 5 remains deep enough to 

support an SEW mode). This can occur in materials with near-zero permeability 

(μ ≈ 0, MNZ) [10], and in any material where μ' ≈ 0 (with μ'' not necessarily 

being small). MNZ conditions are typically found in split-ring resonator (SRR) array 

metamaterials, whose effective permeability is defined [11] as  

.μeff (ω) = 1 −
1 −

l

ωs/ωp

l2

1 − (ωs/ω)2 − iγ /ω
, (6) 

where ωs is the resonant frequency of SRR, ωp is the magnetic plasma frequency of 

the array, and γ < <  ωs is the damping constant. It is assumed that ωp > ωs so that 

μ'' > 0 at all frequencies. The MNZ conditions are observed around ω ≈ ωp, and in 

this frequency range 

.μeff (ω) ≈
iγ ωp

ω2
p − ω2

s

(7) 

If a gradient medium incorporates such an SRR array metamaterial, the surface 

potential described by Eq. 5 becomes almost purely real: 

.V ≈
σγω2

p

ε0c2
(

ω2
p − ω2

s

) −
1

2

∂2σ

σ∂z2
+

3

4

(∂σ/∂z)

σ 2

2

(8) 

(the practical SI units of conductivity are used in this equation.) Moreover, if the 

damping constant is small, the second and third terms in Eq. 8 become much larger 

than the first one, ensuring that the SEW eigenstate remains unperturbed. 

Besides SRR metamaterial geometries, MNZ conditions may also be found 

in natural materials, such as yttrium iron garnet (YIG) near the ferromagnetic 

resonance (FMR) [12]. Since FMR is also present in surface-oxidized iron [13], 

our theoretical results could potentially be applied to practical underwater and 

underground communication systems. In these systems, broadband (MHz compared 

to KHz range acoustic communication) SEW radio communication channels could 

be established along the surfaces of rusty pipes used in underwater and underground 

oil and gas production fields. While this promising possibility warrants a detailed
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investigation of its own, we will now focus on several analytical SEW problems that 

can be solved using the general formalism outlined. 

3 Analytical Solutions of SEW Problem in Gradient Media 

In a general arbitrary case, the effective Schrödinger equations (Eqs. 3 and 4) 

describing the SEW problem in gradient media must be solved numerically (see 

examples in [4, 5, 8]). However, several important simple geometries can be solved 

analytically. Let us begin by demonstrating that the gradient terms in Eqs. 3 and 4 

cannot be neglected. Indeed, if we assume that 

. −
1

2

∂2ε

ε∂z2
+

3

4

(∂ε/∂z)

ε2

2

= 0 (9) 

this differential equation may be solved analytically, and the most general solution 

of this equation is either a constant, or 

.ε(z) =
c2

(c1 + z)2
(10) 

where c1 and c2 are constants. It is evident that such a solution cannot accurately 

represent a step-like function, which is characteristic of a real interface between two 

distinct materials. 

Now, let us examine two nonmagnetic gradient media geometries, as schemat-

ically illustrated in Fig. 2. Figure 2a corresponds to a gradual metal–dielectric 

interface. Let us assume that. 

.ε' = az for | z |< ξ (11) 

and that ε' stays constant outside this region. We will neglect the second derivative 

of ε' near z = ±ξ . We also assume that  ε'' = δ> >  ε', and it stays constant across the 

interface. Under these assumptions, in the limit of small ω, the effective potential 

V(z) given by Eq. 4 becomes a rectangular potential well which depth is: 

.V = −
3α2

4δ2
(12) 

This potential well contains at least one bound SEW state, resembling a surface 

plasmon-like SEW solution. It is important to note that the typically derived 

SPP solution [1] corresponds to the limit where ξ → 0 and δ = 0, resulting 

in a discontinuous ε(z). In this scenario, V → −∞  and the continuity of ψ at 

z = 0 cannot be maintained. Under these special conditions, the derivation of the 

conventional SPP solution reverts to the more common approach described in [1].
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Fig. 2 Two kinds of gradient interfaces which produce a rectangular potential well at the interface. 

(a) A metal–dielectric interface which leads to a surface plasmon-like SEW solution. (b) An  

interface between low-loss and high-loss dielectric which leads to Zenneck-like SEW solution 

Another example, depicted in Fig. 2b, involves a gradient interface between high-

loss and low-loss dielectrics, where 

.ε'' = −αz + αξ for | z |< ξ (13) 

and ε'' stays constant outside this region. Once again, we neglect the second 

derivative of ε'' near z=±ξ . We also assume that ε' = δ>>ε'', and it remains constant 

across the interface. Under these assumptions, the effective potential V(z) given by 

Eq. 4 again forms a rectangular potential well, with its depth defined by Eq. 12. 

Similar to the scenario in Fig. 2a, this potential well possesses at least one bound 

SEW state, corresponding to a Zenneck-like SEW solution. 

In principle, almost any 1D surface potential V(z) can be emulated by appropriate 

(metamaterial) engineering of either the ε(z) or  μ(z) profile. As an example, consider 

a 1D Coulomb potential and the case of an engineered ε(z). The required profile can 

be obtained by solving a differential equation. 

. −
1

2

∂2ε

ε∂z2
+

3

4

(∂ε/∂z)

ε2

2

= −
α

z
(14)
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Fig. 3 A Coulomb-like 

potential well at an interface 

of two media may be 

constructed approximately 

from two ε(z) profiles given  

by Eq. 15. The 1/z 

divergences are cut off at 

z = ±ξ 

where a is an arbitrary positive constant. This equation has been solved using 

ordinary differential equation solver Wolfram Alpha [14], which gives the following 

approximate solution: 

. ε(z) = c2 exp
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l z

1

c1J1

l

2
√

αζ
l

+
√

αζ
l

(c1−2) J0

l

2
√

αζ
l

−c1J2

l

2
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l

2
√

αζ
l
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dζ

l

(15) 

where c1 and c2 are constants, and Jn(z) is the Bessel function of the first kind. 

Since 1/z → 0 in the limit of large z, this solution tends to a constant in this 

limit (see discussion of solutions of Eq. 9 above). On the other hand, ε(z) diverges 

near z = 0. Thus, an interface between two media may be engineered as shown 

in Fig. 3, so that near the interface ε(z) may be approximated with a cutoff 1D 

Coulomb potential. In the limit of small ω such a potential well will support a set of 

Rydberg-like SEW states—see for example ref. [15]. 

The analytical results outlined above support results of [4, 5, 8] which indicate 

that SEW modes are ubiquitous, and they can be found and utilized in all kinds of 

electromagnetic environments. Below we will illustrate several examples of such 

applications in the cases of radio communication underwater in the MHz frequency 

range, Wi-Fi communication through steel pipes in the GHz frequency range, and 

UV nanophotonics. 

4 Radio Frequency Applications of Gradient Surface 

Electromagnetic Waves 

4.1 Underwater Radio Communication at MHz Frequencies 

Let’s begin with the application of SEWs in underwater radio communication. 

These experiments utilized SEW antennas [6] operating in the MHz frequency
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Fig. 4 (a) Photo of an  

underwater radio 

communication experiment 

performed at 50 MHz in pool 

water (skin depth η = 0.1 m). 

The lateral positions of two 

divers underwater are marked 

by two red plastic buoys. (b) 

Experimental results plotted 

as communication distance 

vs. the sum of depths of the 

two radios underwater. Note 

that radio communication was 

achieved over distances of 

many hundreds of skin depth 

range. A SEW antenna specifically excites the propagation mode supported by a 

dielectric (or magnetic) discontinuity when positioned nearby. Unlike traditional 

antennas, a SEW antenna does not radiate or support free space electromagnetic 

fields. In the MHz frequency range underwater, they exhibited efficient radio 

communication over distances spanning several hundred skin depths. An example 

of the experimental setup for a typical 50 MHz underwater radio communication 

experiment performed in chlorinated pool water (in which skin depth at 50 MHz 

equals η = 0.1 m) is depicted in Fig. 4a. In these experiments two Yaesu VX-8 

radios operated at 50 MHz at 5 W output power were connected to their respective 

SEW antennas (as described in detail in [6]), and used for voice communication 

between two divers, while both divers and all the components of their radio systems 

were completely submerged underwater. 

Quantitative analysis of these experiments provides strong evidence of the SEW 

transmission mechanism underwater. When plotted as distance L versus the sum 

of diver depths D1 and D2 underwater (see Fig. 4b), the experimental datapoints 

exhibit a linear dependence. The slope of this dependence clearly points at the
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SEW communication mechanism. Indeed, in the absence of external RF noise, radio 

communication underwater is limited by the constant radio receiver sensitivity, so 

that 

.e
− D1

η' e
− D2

η' e
− L

η∗ ≈ const (16) 

where η' is the SEW penetration depth into water, and η* is the SEW propagation 

length along the water surface (note that neither of these parameters should 

necessarily be equal to the skin depth η, and in fact both η’ and η* exceed η 

considerably). The logarithm of Eq. 16 gives rise to the linear dependence observed 

in the experiment: 

.L ≈ C −
η∗

η' (D1 + D2) (17) 

Based on the experimental data points in Fig. 4b, it appears that η∗ /η' > 6,  

confirming the SEW-mediated mechanism of underwater radio communication. 

This explains the observed combinations of communication depths and distances 

that far exceed the conventional limit set by the bulk skin depth ηη of pool water. 

At 50 MHz, pool water is considered a highly lossy dielectric. With a typical 

conductivity of σ ≈ 0.5 S/m, the imaginary part of its dielectric permittivity 

ε'' ≈ 180 significantly surpasses the real part ε' ≈ 81. The ability of SEW-based 

underwater radios to achieve communication distances of approximately 60 m, or 

about 600 skin depths (and around 100 wavelengths in pool water at 50 MHz), 

clearly demonstrates the low-loss propagation of SEW modes compared to bulk 

radio wave propagation underwater. Additionally, due to their very large bandwidth 

(6 MHz at a 30 MHz carrier frequency), SEWs enable the transmission of live high-

definition video signals underwater (see Fig. 5 and a detailed report in [7]), which is 

impossible to achieve with traditional acoustic communications typically operating 

in the KHz range [16]. 

4.2 Radio Communication Through Metal at GHz Frequencies 

Another intriguing application of the developed theoretical framework involves 

common metals in the GHz frequency range. In this range, all metals behave as 

very high-loss dielectrics due to their extremely high conductivities, typically in 

the range of 106–107 S/m. Considering the relationship between ε'' and material 

conductivity σ as mentioned above: 

.ε''(z) = σ(z)/ε0ω, (18)
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Fig. 5 Transmission of live 

high-definition video image 

underwater using SEW 

antennas operating at 30 MHz 

carrier frequency. As 

indicated in (a), the video 

signal bandwidth is 6 MHz. 

Positions of the underwater 

video camera and the SEW 

antenna are indicated by 

arrows in (b) 

we see that metals in the GHz range are analogous to seawater in the KHz and lower 

MHz ranges. The simplest way to demonstrate the potential of GHz-range SEWs 

in high-loss metal environments is to consider the propagation of SEW-mediated 

signals through metal enclosures. 

SEWs are known to significantly enhance signal transmission through arrays of 

deeply subwavelength holes in metal surfaces [17]. The physical mechanism behind 

this effect is believed to involve the coupling of incoming electromagnetic waves to 

SEWs propagating along the opposite metal-dielectric interfaces of a metal layer. 

Although the original observations in ref. [17] were made in the visible frequency 

range, similar effects have recently been observed with SEW antennas operating in 

the GHz range [18]. Several interesting and practical applications of this effect are 

shown in Figs. 6 and 7. 

Figure 6 demonstrates the transmission of a live Wi-Fi video signal through 

a steel riser pipe, typically used in the oil and gas industry, which was sealed 

tightly at both ends with thick aluminum shields. Notably, the pipe is visibly 

rusty, indicating that both gradients of ε(z) and μ(z) must be considered in a 

comprehensive theoretical description of this experiment. Figure 7 provides further 

examples of GHz-range SEW signal transmission through metal plates.
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Fig. 6 SEW-mediated transmission of Wi-Fi video signal through a 32 m long section of a steel 

riser pipe. The pipe was tightly closed on both ends with thick aluminum shields (a). The Wi-Fi 

video transmitter was moved through the length of the pipe, while live video (seen on the monitor 

in image (b)) was transmitted from inside the pipe (c) with no interruption 

In the first example shown in Fig. 7a, a SEW antenna was connected to a 

commercial ground-penetrating radar (GPR), enabling motion detection through a 

metal plate. A very clear signal, produced by a slight hand wave behind the copper 

plate, is seen in Fig. 7a. It was verified that the native conventional antennas of this 

GPR could not detect any similar hand motion behind the same copper plate. 

As an extension of this experiment, we confirmed that wireless power transmis-

sion through metal walls is also possible in the “SEW mode” (see Fig. 7b). In this 

experiment, we used the P2110-EVAL-01 power harvester circuit from Powercast 

Corporation. A 2.45 GHz SEW antenna in contact with a large copper shield was 

used on the receiving side of the experiment. On the transmitting side, we used the 

same SEW Wi-Fi transmitter as in Fig. 6, with the signal amplified to 10 W by a 

commercial outdoor Wi-Fi amplifier. The transmitting SEW antenna was placed in 

close contact with the metal surface on the other side of the large copper shield. 

As seen on the multimeter screen in Fig. 7b, the power harvester circuit achieved 

4.19 V charging when connected to the SEW antenna. 

These experiments highlight the significant potential of SEW antennas and 

signals in wireless communication and power transfer. Unlike conventional radio 

systems, which cannot transmit signals through metal obstacles, such previously 

prohibitive situations seem ideal for SEW-based remote communication and power 

transfer.
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Fig. 7 (a) Plasmonic antenna 

connected to a commercial 

GPR (QM1020 made by 

USRadar) detects hand 

motion behind a copper plate. 

(b) Plasmonic antenna 

connected to a commercial 

power harvester 

(P2110-EVAL-01 made by 

Powercast Corporation) 

enables wireless power 

transmission through a 

copper plate 

5 Nanophotonics Applications of Gradient Surface 

Electromagnetic Waves 

5.1 UV Silicon Nanophotonics 

Let’s now explore several examples of nanophotonics applications of gradient 

surface electromagnetic waves (SEWs). First, consider the use of SEW solutions 

in highly lossy dielectric media for UV nanophotonics. Since almost all materials 

behave as highly lossy dielectrics in the UV range, TM polarized SEW propagation 

must occur at numerous material interfaces. These SEW solutions will have a k-

vector larger than the k-vector of photons in each adjacent medium, making them 

akin to surface plasmon polaritons (SPPs). The presence of such large k-vector SEW 

modes across various material geometries can lead to novel opportunities in UV 

nanophotonics and environmental sensing. Unlike typical plasmonic metals, which 

are challenging to use in nanofabrication with CMOS techniques, many silicon-

based SEW geometries will become feasible. Indeed, at around 300 nm UV light 

wavelength, doping silicon with metals like nickel or titanium alters the dielectric 

constant’s absolute magnitude while it remains almost purely imaginary.
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Fig. 8 (a) Transmission 

optical microscope image of 

an overlap region between a 

260 nm thick silicon and a 

230 nm thick titanium film. 

The image size is 

117 µm × 88 µm. Note the 

stripe of enhanced 

transmission, which goes in 

parallel with the 

silicon–titanium interface. Its 

cross-section measured along 

the red line is shown in the 

plot (b). The top inset in (a) 

shows experimental geometry 

Our theoretical and experimental findings strongly support the existence of these 

novel SEW modes in the UV-VIS domain, as demonstrated at the silicon–titanium 

interface (see Figs. 8 and 9). In the experiment shown in Fig. 8, we examined 

UV transmission in the overlap region between a 260 nm thick silicon film and a 

230 nm thick titanium film. A stripe of enhanced transmission parallel to the silicon– 

titanium interface is clearly visible. According to Fermi’s golden rule, the increased 

light transmission at the silicon–titanium junction indicates a higher density of 

electromagnetic states (DOS) in the junction area, which becomes accessible to 

photons tunneling through the thick composite conductive film. Thus, the significant 

increase in light transmission near the Si/Ti junction strongly suggests the presence 

of SEW interfacial modes in the UV range. 

Numerical modeling of the effective potential V(z) at the silicon–titanium 

interface (see Fig. 9) for 300 nm UV light also reveals the existence of a SEW 

state. Assuming a 20 nm thick Si/Ti transition region (Fig. 9a), where the dielectric 

permittivity gradually shifts from bulk silicon to bulk titanium values (compare Fig. 

9a with Fig. 3), the resulting effective potential shown in Fig. 9b features a distinct
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Fig. 9 (a) Plot of an assumed 20 nm thick planar transition layer between silicon and titanium 

formed due to diffusion of Ti into Si during deposition. The permittivity of the transition region 

was assumed to follow a simple arctan law: ε'' = Aarctan(z/ξ) + B, where A = (ε''
Si − ε''

Ti)/π 

and B = (ε''
Si + ε''

Ti)/2. The magnitude of ε''(z) is shown at λ0 = 300 nm. The titanium silicide 

number is indicated by an arrow. (b) The corresponding effective potential energy (both real and 

imaginary parts) at the silicon interface defined by Eq. 4 (for TM light) plotted at λ0 = 300 nm. 

The numerically obtained effective energy level is shown in green 

potential well where Im(V) << Re(V), supporting a SEW state indicated in green. 

Note the Coulomb-like character of V(z) at  z > 0, as expected based on Fig. 3. This  

bound state yields at least one solution with an almost purely real wave vector k, 

corresponding to a surface electromagnetic mode with a long propagation length. 

Figure 10 presents numerical simulations of surface wave excitation and scatter-

ing in a Si/Ti gradient waveguide at λ0 = 300 nm. In these simulations, performed 

using the COMSOL Multiphysics solver, the UV light field in the Si/Ti gradient 

surface waveguide is excited by a dipole radiation source placed 7 nm above the 

junction and scattered by a 4 nm diameter metal defect at the 100 nm point, resulting 

in a pattern of standing surface waves. This simulation illustrates SEW propagation 

over lateral distances that significantly exceed the SEW wavelength.
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Fig. 10 COMSOL Multiphysics simulations of surface wave excitation in a Si/Ti junction at 

λ0 = 300 nm. The UV light field in the effective gradient waveguide is excited by a dipole radiation 

source located 7 nm above the junction. A small defect is placed inside the junction at the 100 nm 

point, resulting in a pattern of standing surface waves. This simulation illustrates SEW propagation 

over lateral distances, which far exceed the SEW wavelength 

5.2 Experimental Observation of Surface Wave States 

at the Gold–Silver Interface 

While the strongly lossy case may be very interesting in UV nanophotonics 

applications, let us now consider a gradual interface between two different good 

low-loss metals, such as gold and silver (see Fig. 11). Let’s demonstrate that a 

gradual interface between gold and silver may also support propagation of a gradient 

surface electromagnetic wave, which is different from the more well-known surface 

plasmon polaritons. The existence of such surface waves leads to a paradoxical 

situation in which a continuous metal barrier, which does not have any pinholes, 

may exhibit considerably increased light transmission if the barrier is made of two 

different metals. 

In the visible and near-infrared regions, as depicted in Fig. 11a, the dielectric 

permittivity ε(z) of such a system will be large, negative, and predominantly real 

[21]. For instance, the transition region between gold and silver shown in Fig. 11a 

is assumed to be approximately 10 nm thick. This gradual inter-diffusion layer 

would naturally form if a silver film is deposited on top of a gold film through 

thermal evaporation. The resulting effective potential V(z), calculated using Eq. (4), 

is illustrated in Fig. 11c. We will assess whether a propagating SEW solution can be 

expected for such a potential well.
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Fig. 11 (a) Assumed gradual 

transition region separating 

gold and silver films. (b) 

Corresponding effective 

permittivity calculated using 

Eq. (19) at  λ = 1 mm (c) 

Effective potential of the 

transition region calculated 

using Eq. (4)
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To demonstrate the existence of such a SEW solution, we can start by defining 

the effective permittivity of the transition layer as 

.εeff(z) = ε(z) +
c2

ω2

l

1

2

∂2ε

ε∂z2
−

3

4

(∂ε/∂z)

ε2

2
l

, (19) 

thus incorporating the gradient terms from Eq. (4) into the “effective” permittivity. 

The so obtained effective dielectric permittivity of the transition layer is plotted 

in Fig. 11b. The latter plot demonstrates that a gradual interface between gold 

and silver is equivalent to a parallel plate metallic waveguide, which is known to 

have no cutoff frequency for the TM-polarized light, and which always supports a 

TM0 guided mode (note the region of positive εeff in between the two negative εeff 

regions in Fig. 11b). Indeed, using the Numerov method [22], Eq. (4) may be solved 

numerically for the geometry depicted in Fig. 11. At the free space wavelength of 

λ0 = 1 µm such a numerical solution results in –k2 = −0.00345 nm−2, which leads
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Fig. 12 Schematic geometry of our samples (top) and an AFM image (bottom) of the composite 

film near the gold-silver edge. The AFM image demonstrates that the sample integrity was not 

compromised near edge 

to k = 0.059 nm−1 and λ = 106 nm for the guided TM-polarized SEW mode. While 

the SEW propagation length for a perfectly flat interface is defined by Im(k), in most 

practical situations the propagation length will be defined by surface roughness. 

Our experimental results on light propagation through gold–silver interfaces 

appear to be consistent with theoretical predictions and numerical simulations 

described above. Since direct probing of the SEW field at the gold–silver interface 

using scanning probe technique is not possible, we investigated light transmission 

through composite gold-silver films fabricated on glass slides using thermal evapo-

ration. These experimental results are summarized in Figs. 12 and 13. 

The composite gold-silver films were fabricated on top of glass slides overcoated 

with thin (5 nm) chromium layer for adhesion, as illustrated in Fig. 12. The sample  

shown in Fig. 13a consisted of 80 nm gold film (on the left) overcoated with 

an overlap with 88 nm silver film. The schematic geometry of this sample is 

illustrated in Fig. 12. Optical microscope images of the overlap region obtained 

in reflection (Fig. 13a) and transmission (Fig. 13b–d) using white light illumination 

are shown in these figures. As clearly seen in Fig. 13b, a stripe of strongly enhanced 

light transmission is observed near the edge of the gold-silver overlap region, 

which goes in parallel with the edge. Figures 13c–f summarize results of our 

spectroscopic studies of this effect. It appears that the red light transmission far 

exceeds transmission of blue light through the Au/Ag junction. This is clear from
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Fig. 13 (a) Reflection microscopic image of an overlap region between 88 nm thick silver and 

80 nm thick gold films. The scale bar corresponds to 50 mm. (b) Corresponding transmission image 

obtained using white light illumination. Note the stripe of strongly enhanced transmission, which 

coincides with the gold–silver interface. (c) Transmission image of the same sample obtained using 

a red filter (>75% avg. transmission for 615–730 nm wavelengths and < 1% avg. transmission for 

380–550 nm wavelengths). (d) Transmission image of the same sample obtained using a blue filter 

(center wavelength 440 nm, FWHM = 85 nm) (e) and (f) show the near edge cross-sections of 

the transmission images (c) and (d), respectively. The black curve in (e) corresponds to a different 

sample in which the silver film thickness was increased to 173 nm 

both transmission images obtained with color filters and from comparison of their 

cross-sectional plots presented in Fig. 13e and Fig. 13f through the stripe region. 

Moreover, when the silver film thickness is increased to 173 nm, transmission of 

red light through the junction remains quite considerable (see Fig. 13e), while 

the blue light transmission becomes undetectable at the current sensitivity of our
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experiments. These results are consistent with the novel theoretical mechanism 

discussed above. Indeed, based on Eq.(4), the effective potential V(z) at the Au/Ag  

interface is mostly real at longer wavelengths, where the dielectric permittivity of 

both gold and silver are large, negative, and mostly real. On the other hand, V(z) 

acquires considerable imaginary part toward the blue light wavelengths. Note that 

these results are drastically different from the naïve expectations based on the known 

wavelength-dependent skin depth in gold and silver. Note that the skin depth of 

silver at red light 600 nm wavelength equals about 14 nm. This means that based 

on conventional expectations light would need to be transmitted through at least 12 

skin depths, which makes this effect somewhat similar to the previous experimental 

observations of enhanced SEW transmission underwater (see Sect. 4.1). 

We verified using AFM imaging (see the bottom part of Fig. 12) that the integrity 

of the composite gold-silver film was not compromised in any way near the gold-

silver edge (it did not contain any pinholes or crevices near the edge). Therefore, 

the effect of enhanced optical transmission near the gold-silver edge cannot be 

attributed to defects of the composite film. 

Based on the obtained theoretical and experimental information, we must 

conclude that the effect of enhanced light transmission through the composite gold-

silver film may be connected to the existence of novel SEW modes at the gold–silver 

interface. Similar to SPP-mediated light transmission through nanohole arrays [17], 

these novel SEW modes may facilitate transmission of light through a continuous 

composite metal film. Indeed, according to the Fermi’s golden rule, the increased 

transmission of light at the gold–silver junction indicates an increased density of 

photonic states (DOS) in the general area of the junction, which become available 

to the photons tunneling through the composite metal film. This increase may occur 

due to the surface topog-raphy step (see Fig. 12), which breaks the momentum 

conservation law and facilitates coupling between photons and surface plasmons 

of the metal films. However, this mechanism is excluded by our control experiments 

with Ag/Ag junctions in which a silver film of similar thickness was overcoated 

with another silver film and no enhanced transmission was observed (see Fig. 14– 

compare with Fig. 13a,c). The newly discovered interfacial states of the gold–silver 

interface are another source of the DOS increase, which becomes available to the 

tunneling photons. Therefore, a strong increase in light transmission near the Au/Ag 

junction (in the demonstrated absence of the topographical effects) is a strong 

indication in favor of our theoretical model. 

6 Discussion and Conclusion 

Table 1 below illustrates the common feature of our experiments on SEW propa-

gation in various material systems. In all these situations ε''> >  ε' in the relevant 

frequency range, while ε''(z) exhibits considerable gradients near surface. Note that 

in the GHz frequency range typical metals are described by complex conductivities, 

so that σ'' ≈ ωτσ', where the inverse relaxation time τ−1 is typically in the infrared
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Fig. 14 (a) Reflection microscopic image of an overlap region between 75 nm thick silver film on 

top of 80 nm thick silver film. The scale bar corresponds to 50 µm. (b) Corresponding transmission 

image obtained using white light illumination and the same red filter as in Fig. 13c 

Table 1 Dielectric permittivity of relevant high loss materials 

Pool water @50 MHz [6] Steel@3 GHz Si @300 nm [19, 20] 

ε' 81 ~103 1.7 

ε'' 180 8.7 × 106, see [18] 36 

frequency range [23]. Therefore, as was noted above, the case of metals in the GHz 

range basically corresponds to the case of seawater in the KHz and lower MHz 

ranges. Table 1 provides us with a strong assurance that the experimental cases 

considered in Sects. 4 and 5 may be treated in a similar fashion. 

In conclusion, we have demonstrated that novel low-loss propagating surface 

wave solutions can exist in a gradient medium in which both dielectric permittivity 

and magnetic permeability are dominated by their imaginary parts. In addition, we 

have studied several examples of gradient geometries in which the surface wave 

problem may be solved analytically. Our results indicate practical ways in which 

broadband radio communication channels may be established along the surfaces of 

rusty pipes deployed in underwater and underground oil and gas producing fields. 

The developed theory also has important implications in the fields of nanophotonics 

and metamaterial optics, where the negative effect of metamaterial losses on signal 

propagation remains a major problem. We presented several experimental examples 

of practically useful novel surface wave geometries spanning the range of frequen-

cies from MHz range radio communication underwater to Wi-Fi communication 

through steel pipes in the GHz frequency range, and to UV nanophotonics.
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The Circular Bragg Phenomenon 
Updated 

Akhlesh Lakhtakia 

1 Introduction 

The circular Bragg phenomenon is the circular-polarization-state-selective reflec-
tion of plane waves in a spectral regime called the circular Bragg regime that 
depends on the direction of incidence [1, 2]. This phenomenon is displayed by 
structurally chiral materials (SCMs) exemplified by chiral liquid crystals [3–9] 
and chiral sculptured thin films [10–12]. These linear materials are periodically 
nonhomogeneous along a fixed axis, their constitutive dyadics rotating either 
clockwise or counterclockwise at a fixed rate about that axis [13, 14]. The reflection 
is very high when left-circularly polarized (LCP) light is incident on a left-
handed SCM, which is periodically nonhomogeneous along the thickness direction, 
provided that (i) the direction of incidence is not too oblique with respect to the 
thickness direction, (ii) the free-space wavelength lies in the circular Bragg regime, 
and (iii) the number of periods in SCM is sufficiently large; however, when right-
circularly polarized light (RCP) is incident on a left-handed SCM, the reflectance 
is very low in the circular Bragg regime [1, 12, 15, 16]. An analogous statement 
holds for right-handed SCMs. The circular Bragg phenomenon is resilient against 
structural disorder [17] and the tilt of the axis of periodicity [18, 19]. 

An expository and detailed review of the literature on circular Bragg phe-
nomenon was published in 2014 [1], to which the interested reader is referred. 
During the subsequent decade, several novel results—both experimental [11, 12, 20, 
21] and theoretical [22, 23]—on the plane-wave response of SCMs have emerged, 
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which prompted me to compile this album of theoretical numerical results on the 
plane-wave response of SCMs. Of course, no novelty can be claimed for these 
results, but this album is expected to guide relevant research for the next decade. 

This chapter is organized as follows. Section 2 provides the essentials of 
the boundary-value problem underlying the plane-wave response of an SCM of 
finite thickness. Section 3 provides illustrative results on the spectral variations 
of intensity-dependent observable quantities, and Sect. 4 is focused similarly on 
phase-dependent observable quantities, in the reflection half-space as well as in 
the transmission half-space, in relation to the polarization state and the direction 
of propagation of the incident plane wave. 

An exp(−iωt). dependence on time t is implicit, where ω . as the angular 
frequency and i =

√
−1.. With ε0 . and μ0 ., respectively, denoting the permittivity 

and permeability of free space, the free-space wavenumber is denoted by k0 =
ω

√
ε0μ0 ., and λ0 = 2π/k0 . is the free-space wavelength. The Cartesian coordinate 

system (x, y, z). is adopted. Vectors are in boldface and unit vectors are additionally 
decorated by a caret on top. Dyadics [24] are double underlined. Column vectors 
are underlined and enclosed in square brackets. The asterisk (∗).denotes the complex 
conjugate and the dagger (†). denotes the conjugate transpose. 

2 Boundary-Value Problem 

The half-space z < 0. is the region of incidence and reflection, while the half-space 
z > L. is the region of transmission. The region 0 < z < L. is occupied by an SCM. 

2.1 Relative Permittivity Dyadic of SCM 

The relative permittivity dyadic of the SCM is given by [10] 

. εrel(z) = Sz(h,o, z)•Sy(χ)•
l

εaẑẑ + εbx̂x̂ + εcŷŷ
l

•S−1
y (χ)•S−1

z (h,o, z) , z ∈ (0, L) . (1) 

The frequency-dependent relative permittivity scalars εa ., εb ., and εc . embody local 
orthorhombicity [25]. The tilt dyadic 

.Sy(χ) = ŷŷ +
l

x̂x̂ + ẑẑ
l

cosχ +
l

ẑx̂ − x̂ẑ
l

sinχ (2) 

contains χ ∈ [0, π/2]. as an angle of inclination with respect to the xy plane. The 
structural handedness of the SCM is captured by the rotation dyadic
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.Sz(h,o, z) = ẑẑ +
l

x̂x̂ + ŷŷ
l

cos
l

h
πz

o

l

+
l

ŷx̂ − x̂ŷ
l

sin
l

h
πz

o

l

, (3) 

where 2o. is the structural period in the thickness direction (i.e., along the z axis), 
whereas h ∈ {−1, 1}. is the structural-handedness parameter, with h = −1. for 
structural left-handedness and h = 1. for structural right-handedness. 

The foregoing equations apply to chiral sculptured thin films [10–12] and chiral 
smectic liquid crystals [6–8], with εa /= εb /= εc . and χ > 0◦

.. They also apply to 
cholesteric liquid crystals with εa /= εb = εc . and χ = 0◦

. [4, 5] and heliconical 
cholesteric liquid crystals [9] with εa /= εb = εc . and χ ∈ (0◦, 90◦).. 

2.2 Incident, Reflected, and Transmitted Plane Waves 

A plane wave, propagating in the half-space z < 0. at an angle θinc ∈ [0, π/2). with 
respect to the z axis and at an angle ψ ∈ [0, 2π).with respect to the x axis in the xy 

plane, is incident on the SCM of thickness L. The electric field phasor associated 
with the incident plane wave is represented as [10] 

.Einc(r) =
l

ass + app+
l

exp [iκ (x cosψ + y sinψ)] exp (ik0zcos θinc). (4a) 

=
l

(is − p+)√
2 

aL − 
(is + p+)√

2 
aR

l

exp [iκ (x cos ψ + y sin ψ)] 

× exp (ik0zcos θinc) , z  <  0 , (4b) 

where 

.

κ = k0 sin θinc

s = −x̂ sinψ + ŷ cosψ

p± = ∓
l

x̂ cosψ + ŷ sinψ
l

cos θinc + ẑ sin θinc

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (5) 

The amplitudes of the perpendicular- and parallel-polarized components, respec-
tively, are denoted by as . and ap . in Eq. (4a). The amplitudes of the LCP and the RCP 
components of the incident plane wave are denoted by aL . and aR ., respectively, in 
Eq. (4b). 

The electric field phasor of the reflected plane wave is expressed as 

.Eref(r) =
l

rss + rpp−
l

exp [iκ (x cosψ + y sinψ)] exp (−ik0z cos θinc) . (6a) 

= −
l

(is − p−)√
2 

rL − 
(is + p−)√

2 
rR

l

exp [iκ (x cos ψ + y sin ψ)] 

× exp (−ik0z cos θinc) , z  <  0 , (6b)
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and the electric field phasor of the transmitted plane wave is represented as 

.Etr(r) =
l

tss + tpp+
l

exp [iκ (x cosψ + y sinψ)] exp [ik0(z − L) cos θinc] .(7a) 

=
l

(is − p+)√
2 

tL − 
(is + p+)√

2 
tR

l

exp [iκ (x cos ψ + y sin ψ)] 

× exp [ik0(z − L) cos θinc] , z  >  L  . (7b) 

Linear reflection amplitudes are denoted by rs . and rp . in Eq. (6a), whereas the 
circular reflection amplitudes are denoted by rL . and rR . in Eq. (6b). Similarly, ts . 
and tp . are the linear transmission amplitudes in Eq. (7a), whereas tL . and tR . are the 
circular transmission amplitudes in Eq. (7b). 

2.3 Reflection and Transmission Coefficients 

The reflection amplitudes rs . and rp . as well as the transmission amplitudes ts . and tp . 
(equivalently, rL ., rR ., tL ., and tR .) are unknown. A boundary-value problem must be 
solved in order to determine these amplitudes in terms of as . and ap . (equivalently, aL . 

and aR .). Several numerical techniques exist to solve this problem [26–29]. The most 
straightforward technique requires the use of the piecewise uniform approximation 
of εrel(z). followed by application of the 4 ×.4 transfer-matrix method [30]. The 
interested reader is referred to Ref. 10 for a detailed description of this technique. 

Interest generally lies in determining the reflection and transmission coefficients 
entering the 2 ×.2 matrixes on the left side in each of the following four relations 
[10]: 

.

l

rs

rp

l

=
l

rss rsp

rps rpp

l l

as

ap

l

, (8a) 

.

l

ts

tp

l

=
l

tss tsp

tps tpp

l l

as

ap

l

, (8b) 

.

l

rL

rR

l

=
l

rLL rLR

rRL rRR

l l

aL

aR

l

, (8c) 

and 

.

l

tL

tR

l

=
l

tLL tLR

tRL tRR

l l

aL

aR

l

. (8d) 

These coefficients are doubly subscripted: those with both subscripts identical refer 
to co-polarized, while those with two different subscripts denote cross-polarized,
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reflection or transmission. Clearly from Eqs. (4a)–(7b), the coefficients defined via 
Eqs. (8a) and (8b) are simply related to those defined via Eqs. (8c) and (8d). 

2.4 Parameters Chosen for Calculations 

An album of numerical results is presented in the remainder of this chapter, with the 
frequency-dependent constitutive parameters 

.εa,b,c(λ0) = 1 + pa,b,c

1 + (N−1
a,b,c − iλ−1

0 λa,b,c)2
(9) 

chosen to be single-resonance Lorentzian functions [31], this choice being con-
sistent with the requirement of causality [32–34]. The oscillator strengths are 
determined by the values of pl ., λl(1 + N−2

l )−1/2
. are the resonance wavelengths, 

and λl/Nl . are the resonance linewidths, l ∈ {a, b, c}.. Values of the parameters 
used for all theoretical results reported in this chapter are as follows: pa = 2.3., 
pb = 3.0., pc = 2.2., λa = λc = 260. nm, λb = 270. nm, and Na = Nb = Nc = 130.. 
Furthermore, χ = 37◦

., L = 30o., and o = 150. nm. 
The album comprising Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 contains 2D plots 

of the theoretically calculated spectral variations of diverse observable quantities in 
the reflection and transmission half-spaces for either 

• θinc ∈ [0◦, 90◦). and ψ = 0◦
. or 

• θinc = 0◦
. and ψ ∈ [0◦, 360◦).. 

These plots are provided for both h = 1. and h = −1. to facilitate easy comparison 
of the effect of structural handedness. 

3 Intensity-Dependent Quantities 

3.1 Circular Remittances 

The square of the magnitude of a circular reflection or transmission coefficient is 
the corresponding circular reflectance or transmittance; thus, RLR = |rLR|2 ∈ [0, 1]. 
is the circular reflectance corresponding to the circular reflection coefficient rLR ., 
TLR = |tLR|2 ∈ [0, 1]. is the circular transmittance corresponding to the circular 
transmission coefficient tLR ., and so on. The total circular reflectances are given by 

.

RL = RLL + RRL ∈ [0, 1]
RR = RRR + RLR ∈ [0, 1]

l

(10)
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and the total circular transmittances by 

.

TL = TLL + TRL ∈ [0, 1]
TR = TRR + TLR ∈ [0, 1]

l

. (11) 

As the principle of conservation of energy must be satisfied by the presented 
formalism, the inequalities [10] 

.Rl + Tl ≤ 1 , l ∈ {L,R} , (12) 

hold, with the equalities relevant only if the SCM is non-dissipative at a particular 
frequency of interest. 

The Bragg phenomenon was discovered as a reflection phenomenon, so that its 
chief signature comprises high-reflectance spectral regimes [35–37]. The same is 
true of the circular Bragg phenomenon, which has been confirmed by time-domain 
simulations [38–40]. 

In addition, the circular Bragg phenomenon is best manifested as the circular-
polarization-state-selective reflection of light. Therefore, it is best to begin the album 
with the spectral variations of the circular reflectances Rμν(λ0, θinc, ψ)., μ ∈ {L,R}. 
and ν ∈ {L,R}.. These are presented in Fig. 1 for h = ±1.. 

Note the presence of a high-reflectance ridge in the plots of RRR . for h = 1. and in 
the plots of RLL . for h = −1. in Fig. 1. For fixed ψ ., the high-reflectance ridge curves 
toward shorter wavelengths as θinc . increases, which has been experimentally verified 
[11, 12, 20]. For fixed θinc ., the high-reflectance ridge is more or less invariant with 
respect to ψ .. The ridge is absent in the plots of RLL . for h = 1. and in the plots 
of RRR . for h = −1.; however, the ridge is vestigially present in the plots of both 
cross-polarized reflectances. 

The fraction of the power density of the incident plane wave that is not reflected 
is either transmitted into the half-space z > L. or absorbed in the SCM (0 < z < L.). 
Since Im (εl) > 0., l ∈ {a, b, c}., there is some absorption [11, 20]. Accordingly, in 
Fig. 2, the circular Bragg phenomenon is manifested as a low-transmittance trough 
in the plots of TRR . for h = 1. and in the plots of TLL . for h = −1., that trough being 
absent in the plots of TLL . for h = 1. and in the plots of TRR . for h = −1.. Vestigial 
presence of the trough in the plots of TLR . and TRL . for h = ±1. should also be noted. 

3.2 Linear Remittances 

The square of the magnitude of a linear reflection or transmission coefficient is the 
corresponding linear reflectance or transmittance; thus, Rsp = |rsp|2 ∈ [0, 1]. is the 
linear reflectance corresponding to the linear reflection coefficient rsp . and Tps =
|tps|2 ∈ [0, 1]. is the linear transmittance corresponding to the linear transmission 
coefficient tps ., etc. The total linear reflectances are given by
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Fig. 1 Spectral variations of circular reflectances Rμν(λ0, θinc, ψ)., μ ∈ {L,R}. and ν ∈ {L,R}., 
when (a), (b) h = 1.and (c), (d) h = −1.. (a), (c) θinc ∈ [0◦, 90◦).andψ = 0◦

.; (b), (d) θinc = 0◦
.and 

ψ ∈ [0◦, 360◦).. (a) h = 1., θinc ∈ [0◦, 90◦)., and ψ = 0◦
.. (b) h = 1., θinc = 0◦

., and ψ ∈ [0◦, 360◦).. 
(c) h = −1., θinc ∈ [0◦, 90◦)., and ψ = 0◦

.. (d) h = −1., θinc = 0◦
., and ψ ∈ [0◦, 360◦). 

.

Rs = Rss + Rps ∈ [0, 1]
Rp = Rpp + Rsp ∈ [0, 1]

l

(13) 

and the total linear transmittances by 

.

Ts = Tss + Tps ∈ [0, 1]
Tp = Tpp + Tps ∈ [0, 1]

l

. (14) 

The inequalities (12) still hold with l ∈ {s, p}. and convert to equalities only if the 
SCM is non-dissipative at a particular frequency of interest.
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Fig. 2 Spectral variations of circular transmittances Tμν(λ0, θinc, ψ)., μ ∈ {L,R}. and ν ∈ {L,R}., 
when (a), (b) h = 1.and (c), (d) h = −1.. (a), (c) θinc ∈ [0◦, 90◦).andψ = 0◦

.; (b), (d) θinc = 0◦
.and 

ψ ∈ [0◦, 360◦).. (a) h = 1., θinc ∈ [0◦, 90◦)., and ψ = 0◦
.. (b) h = 1., θinc = 0◦

., and ψ ∈ [0◦, 360◦).. 
(c) h = −1., θinc ∈ [0◦, 90◦)., and ψ = 0◦

.. (d) h = −1., θinc = 0◦
., and ψ ∈ [0◦, 360◦). 

Linear reflectances can be written in terms of circular reflectances [10]. 
Therefore, the circular Bragg regime is evident in the spectral variations of both 
co-polarized linear reflectances as a medium-reflectance ridge and in the spectral 
variations of both cross-polarized reflectances as a low-reflectance ridge [11, 20], 
in Fig. 3 for both h = 1. and h = −1.. For fixed ψ ., the ridge curves toward shorter 
wavelengths as θinc . increases. For fixed θinc ., the low-reflectance ridge in the plots of 
Rps . and Rsp . is more or less invariant with respect to ψ .; but the medium-reflectance 
ridge in the plots of Rss . and Rpp . has two periods of undulations. 

Linear transmittances can be written in terms of circular transmittances [10, 22]. 
The spectral variations of both co-polarized linear transmittances exhibit a medium-
transmittance trough and both cross-polarized linear transmittances show a low-
reflectance ridge [11, 20], in Fig. 4 for both h = 1. and h = −1.. Indicative of the 
circular Bragg phenomenon, these features curve toward shorter wavelengths as θinc .
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Fig. 3 Spectral variations of linear reflectances Rμν(λ0, θinc, ψ)., μ ∈ {s, p}. and ν ∈ {s, p}., when  
(a), (b) h = 1. and (c), (d) h = −1.. (a), (c) θinc ∈ [0◦, 90◦). and ψ = 0◦

.; (b), (d) θinc = 0◦
. and 

ψ ∈ [0◦, 360◦).. (a) h = 1., θinc ∈ [0◦, 90◦)., and ψ = 0◦
.. (b) h = 1., θinc = 0◦

., and ψ ∈ [0◦, 360◦).. 
(c) h = −1., θinc ∈ [0◦, 90◦)., and ψ = 0◦

.. (d) h = −1., θinc = 0◦
., and ψ ∈ [0◦, 360◦). 

increases when ψ . is held fixed. For fixed θinc . but variable ψ ., the low-transmittance 
ridge in the plots of Tps . and Tsp . and the medium-transmittance trough in the plots of 
Tss . and Tpp . have two periods of undulations. 

3.3 Circular and Linear Dichroisms 

With 

.

AL = 1 − (RL + TL) ∈ [0, 1]
AR = 1 − (RR + TR) ∈ [0, 1]

l

(15)
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Fig. 4 Spectral variations of linear transmittances Tμν(λ0, θinc, ψ)., μ ∈ {s, p}. and ν ∈ {s, p}., 
when (a), (b) h = 1.and (c), (d) h = −1.. (a), (c) θinc ∈ [0◦, 90◦).andψ = 0◦

.; (b), (d) θinc = 0◦
.and 

ψ ∈ [0◦, 360◦).. (a) h = 1., θinc ∈ [0◦, 90◦)., and ψ = 0◦
.. (b) h = 1., θinc = 0◦

., and ψ ∈ [0◦, 360◦).. 
(c) h = −1., θinc ∈ [0◦, 90◦)., and ψ = 0◦

.. (d) h = −1., θinc = 0◦
., and ψ ∈ [0◦, 360◦). 

as the circular absorptances, 

.CDtru =
l

AR −
l

AL ∈ [−1, 1] (16) 

is the true circular dichroism, which quantitates the circular-polarization-
dependence of absorption. The apparent circular dichroism 

.CDapp =
l

TR −
l

TL ∈ [−1, 1] (17) 

is a measure of the circular-polarization-state-dependence of transmission [11]. 
Whereas CDapp .may not equal zero for a non-dissipative SCM, CDtru .must be. 

Figure 5 contains plots of the spectral variations of both CDapp . and CDtru . in 
relation to the direction of plane-wave incidence. The circular Bragg phenomenon 
is evident as a trough in all plots of CDapp . and CDtru . for h = 1., and as a ridge in
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Fig. 5 Spectral variations of apparent circular dichroism CDapp(λ0, θinc, ψ)., true circular dichro-
ism CDtru(λ0, θinc, ψ)., apparent linear dichroism LDapp(λ0, θinc, ψ)., and true linear dichroism 
LDtru(λ0, θinc, ψ)., when (a), (b) h = 1. and (c), (d) h = −1.. (a), (c) θinc ∈ [0◦, 90◦). and ψ = 0◦

.; 
(b), (d) θinc = 0◦

. and ψ ∈ [0◦, 360◦).. (a) h = 1., θinc ∈ [0◦, 90◦)., and ψ = 0◦
.. (b) h = 1., 

θinc = 0◦
., and ψ ∈ [0◦, 360◦).. (c) h = −1., θinc ∈ [0◦, 90◦)., and ψ = 0◦

.. (d) h = −1., θinc = 0◦
., 

and ψ ∈ [0◦, 360◦). 

all plots of CDapp . and CDtru . for h = −1.. Furthermore, the quantities hCDapp . and 
hCDtru . are invariant if the sign of h is changed. These features curve toward shorter 
wavelengths as θinc . increases while ψ . is held fixed, as has been experimentally 
verified [11]. For normal incidence (i.e., θinc = 0◦

.), the effect of ψ . is minimal. 
Similarly to the circular absorptances, 

.

As = 1 − (Rs + Ts) ∈ [0, 1]
Ap = 1 −

l

Rp + Tp
l

∈ [0, 1]

l

(18) 

are the linear absorptances. The true linear dichroism is defined as [11]
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.LDtru =
l

As −
l

Ap ∈ [−1, 1] (19) 

and the apparent linear dichroism as 

.LDapp =
l

Ts −
l

Tp ∈ [−1, 1] . (20) 

Whereas LDtru ≡ 0. for a non-dissipative SCM, LDapp .may not be null valued. 
Figure 5 also contains plots of the spectral variations of both LDapp . and LDtru . in 

relation to the direction of plane-wave incidence. The circular Bragg phenomenon 
is featured in all plots. For fixed ψ ., the feature curves toward shorter wavelengths as 
θinc . increases, which has been experimentally verified [11]. For normal incidence, 
the feature has two undulations with increasing ψ ., and the replacement h → −h. 

affects both LDapp . and LDtru . non-trivially. 

4 Phase-Dependent Quantities 

4.1 Ellipticity and Optical Rotation 

The most general plane wave in free space is elliptically polarized [41]. Signed 
ellipticity functions 

.

EF inc = −2
Im

l

asa
∗
p

l

|as|2 + |ap|2

EF ref = −2
Im

l

rsr
∗
p

l

|rs|2 + |rp|2

EF tr = −2
Im

l

tst
∗
p

l

|ts|2 + |tp|2

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(21) 

characterize the shapes of the vibration ellipses of the incident, reflected, and 
transmitted plane waves. 

Note that EF l ∈ [−1, 1]., l ∈ {inc, ref, tr}.. The magnitude of EF l
. is the 

ellipticity of the plane wave labeled l.. The vibration ellipse simplifies to a circle 
when

l

lEF l
l

l = 1. (circular polarization state), and it degenerates into a straight 

line when EF l = 0. (linear polarization state). The plane wave is left-handed for 
EF l > 0. and right-handed for EF l < 0.. 

The major axes of the vibration ellipses of the incident and the reflected/ 
transmitted plane waves may not coincide, the angular offset between the two major 
axes known as optical rotation. The auxiliary vectors [10]
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. 

Finc =
l

1 +
l

1 −
l

EF inc
l2

l1/2
l

Re
l

ass + app+
l

+ EF inc Im
l

asp+ − aps
l

Fref =
l

1 +
l

1 −
l

EF ref
l2

l1/2
l

Re
l

rss + rpp−
l

+ EF ref Im
l

rsp− − rps
l

Ftr =
l

1 +
l

1 −
l

EF tr
l2

l1/2
l

Re
l

tss + tpp+
l

+ EF tr Im
l

tsp+ − tps
l

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(22) 

are parallel to the major axes of the respective vibration ellipses. Therefrom, the 
angles τ inc ., τ ref ., and τ tr . are calculated using the following expressions: 

.

cos τ l =
l

Fl•s
l

/
l

lFl
l

l , l ∈ {inc, ref, tr}
sin τ l =

l

Fl•p+
l

/
l

lFl
l

l , l ∈ {inc, tr}
sin τ ref =

l

Fref•p−
l

/
l

lFref
l

l

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (23) 

The optical rotation of the reflected/transmitted plane wave then is the angle 

.ORl =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

τ l − τ inc + π , if − π ≤ τ l − τ inc ≤ −π/2 ,

τ l − τ inc , if
l

lτ l − τ inc
l

l < π/2 ,

τ l − τ inc − π , ifπ/2 ≤ τ l − τ inc ≤ π ,

l ∈ {ref, tr} . (24) 

The ellipticity function of the reflected/transmitted plane wave is denoted by 
EF l

s . and EF l
p ., respectively, and the optical rotation of the reflected/transmitted 

plane wave is denoted by ORl
s . and ORl

p ., respectively, for incident perpendicular-
polarized and parallel-polarized plane waves, l ∈ {ref, tr}.. 

Figure 6 provides the spectral variations of EF ref
s,p . and ORref

s,p ., and Fig. 7 the 

spectral variations of EF tr
s,p . and ORtr

s,p .. A feature representing the circular Bragg 
phenomenon is clearly evident in all 32 plots in the two figures. For fixed ψ ., the  
feature curves toward shorter wavelengths as θinc . increases. For normal incidence, 
the feature has two undulations with increasing ψ .. Although measurements of 
optical rotation and ellipticity of the transmitted plane wave for normal incidence 
have been reported for over a century [42–44], comprehensive experimental 
investigations for oblique incidence are very desirable in the near future. 

4.2 Geometric Phases of Reflected and Transmitted Plane 

Waves 

The Stokes parameters of the incident plane wave are given by Jackson [45]
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Fig. 6 Spectral variations of the optical rotation ORref
μ (λ0, θinc, ψ). and ellipticity function 

EF ref
μ (λ0, θinc, ψ)., μ ∈ {s, p}., of the reflected plane wave, when (a), (b) h = 1. and (c), (d) 

h = −1.. (a), (c) θinc ∈ [0◦, 90◦). and ψ = 0◦
.; (b), (d) θinc = 0◦

. and ψ ∈ [0◦, 360◦).. (a) 
h = 1., θinc ∈ [0◦, 90◦)., and ψ = 0◦

.. (b) h = 1., θinc = 0◦
., and ψ ∈ [0◦, 360◦).. (c) h = −1., 

θinc ∈ [0◦, 90◦)., and ψ = 0◦
.. (d) h = −1., θinc = 0◦

., and ψ ∈ [0◦, 360◦). 

.

sinc0 = |aL|2 + |aR|2 = |as|2 + |ap|2

sinc1 = 2Re
l

aL a∗
R

l

= |ap|2 − |as|2

sinc2 = 2 Im
l

aL a∗
R

l

= 2Re
l

as a∗
p

l

sinc3 = |aR|2 − |aL|2 = 2 Im
l

as a∗
p

l

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

. (25) 

The Poincaré spinor
l

φinc
l

. of the incident plane wave can then be obtained from 

Eqs. (26) and (27) in the Appendix. 
After making the changes

l

aL → rL, aR → rR, as → rs, ap → rp
l

., Eqs. (25) 

can be used to determine the Stokes parameters sref0 ., sref1 ., sref2 ., and sref3 .of the reflected
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Fig. 7 Spectral variations of the optical rotation ORtr
μ(λ0, θinc, ψ). and ellipticity function 

EF tr
μ (λ0, θinc, ψ)., μ ∈ {s, p}., of the transmitted plane wave, when (a), (b) h = 1. and (c), (d) 

h = −1.. (a), (c) θinc ∈ [0◦, 90◦). and ψ = 0◦
.; (b), (d) θinc = 0◦

. and ψ ∈ [0◦, 360◦).. (a) 
h = 1., θinc ∈ [0◦, 90◦)., and ψ = 0◦

.. (b) h = 1., θinc = 0◦
., and ψ ∈ [0◦, 360◦).. (c) h = −1., 

θinc ∈ [0◦, 90◦)., and ψ = 0◦
.. (d) h = −1., θinc = 0◦

., and ψ ∈ [0◦, 360◦). 

plane wave, and the Poincaré spinor
l

φref
l

. of the reflected plane wave can then be 

obtained from Eqs. (26) and (27). Calculation of the Poincaré spinor
l

φtr
l

. of the 

transmitted plane wave follows the same route [46]. 
Thereafter, the reflection-mode geometric phase oref

l . and the transmission-mode 
geometric phase otr

l ., l ∈ {s, p,R,L}., can be calculated with respect to the incident 
plane wave using Eq. (28) in available in the Appendix. The subscript l. in both 
quantities indicates the polarization state of the incident plane wave: perpendicular 
(s), parallel (p), left-circular (L), or right-circular (R). 

Note that oref
R = otr

R ≡ 0. because of the structure of
l

φinc
l

. for an incident RCP 

plane wave [22, 23]. The other six geometric phases oref
l . and otr

l ., l ∈ {s, p, L}., are  
generally non-zero in Figs. 8, 9, 10, and 11; furthermore, their spectral dependencies
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Fig. 8 Spectral variations of the total circular reflectance Rμ(λ0, θinc, ψ). and reflection-mode 
geometric phase oref

μ (λ0, θinc, ψ)., μ ∈ {L,R}., when (a), (b) h = 1. and (c), (d) h = −1.. (a), 
(c) θinc ∈ [0◦, 90◦). and ψ = 0◦

.; (b), (d) θinc = 0◦
. and ψ ∈ [0◦, 360◦).. (a) h = 1., θinc ∈ [0◦, 90◦)., 

and ψ = 0◦
.. (b) h = 1., θinc = 0◦

., and ψ ∈ [0◦, 360◦).. (c) h = −1., θinc ∈ [0◦, 90◦)., and ψ = 0◦
.. 

(d) h = −1., θinc = 0◦
., and ψ ∈ [0◦, 360◦). 

have some resemblance to those of the corresponding total remittances defined in 
Eqs. (10), (11), (13), and (14). Indeed, a feature representing the circular Bragg 
phenomenon is clearly evident in the plots oforef

l . and otr
l ., l ∈ {s, p, L}.. The feature 

curves toward shorter wavelengths as θinc . increases while ψ . is fixed, and the feature 
has two undulations with increasing ψ . for normal incidence. 

Although the geometric phase of the transmitted plane wave has been measured 
for normal incidence on a chiral sculptured thin film [21], that was done only at 
a single value of λ0 ., that too in the long-wavelength neighborhood of the circular 
Bragg regime. Hopefully, experimental verification of the features evident in Figs. 8, 
9, 10, and 11 will be carried out soon and the role of structural handedness clarified.
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Fig. 9 Spectral variations of the total circular transmittance Tμ(λ0, θinc, ψ). and transmission-
mode geometric phase otr

μ(λ0, θinc, ψ)., μ ∈ {L,R}., when (a), (b) h = 1. and (c), (d) h = −1.. (a), 
(c) θinc ∈ [0◦, 90◦). and ψ = 0◦

.; (b), (d) θinc = 0◦
. and ψ ∈ [0◦, 360◦).. (a) h = 1., θinc ∈ [0◦, 90◦)., 

and ψ = 0◦
.. (b) h = 1., θinc = 0◦

., and ψ ∈ [0◦, 360◦).. (c) h = −1., θinc ∈ [0◦, 90◦)., and ψ = 0◦
.. 

(d) h = −1., θinc = 0◦
., and ψ ∈ [0◦, 360◦). 

5 Final Remark 

Measurement of intensity-dependent observable quantities such as reflectances 
and transmittances was instrumental in the identification of the circular Bragg 
phenomenon [44, 47] and continues to be undertaken [11, 12, 20]. However, 
measurement of phase-dependent quantities, especially for oblique incidence, has 
been identified in this update as an arena for comprehensive research in the near 
future.
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Fig. 10 Spectral variations of the total linear reflectance Rμ(λ0, θinc, ψ). and reflection-mode 
geometric phase oref

μ (λ0, θinc, ψ)., μ ∈ {s, p}., when (a), (b) h = 1. and (c), (d) h = −1.. (a), 
(c) θinc ∈ [0◦, 90◦). and ψ = 0◦

.; (b), (d) θinc = 0◦
. and ψ ∈ [0◦, 360◦).. (a) h = 1., θinc ∈ [0◦, 90◦)., 

and ψ = 0◦
.. (b) h = 1., θinc = 0◦

., and ψ ∈ [0◦, 360◦).. (c) h = −1., θinc ∈ [0◦, 90◦)., and ψ = 0◦
.. 

(d) h = −1., θinc = 0◦
., and ψ ∈ [0◦, 360◦). 

Appendix: Poincaré Spinor and Geometric Phase 

Any uniform plane wave propagating in free space can be represented as a point on 
the surface of the Poincaré sphere s21 + s22 + s23 = s20 ., where s0 ., s1 ., s2 ., and s3 . are 
the four Stokes parameters. The plane wave’s location is identified by the longitude 
α ∈ [0, 2π). and the latitude β ∈ [−π/2, π/2]. defined through the relations
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Fig. 11 Spectral variations of the total linear transmittance Tμ(λ0, θinc, ψ).and transmission-mode 
geometric phase otr

μ(λ0, θinc, ψ)., μ ∈ {s, p}., when (a), (b) h = 1. and (c), (d) h = −1.. (a), (c) 
θinc ∈ [0◦, 90◦). and ψ = 0◦

.; (b), (d) θinc = 0◦
. and ψ ∈ [0◦, 360◦).. (a) h = 1., θinc ∈ [0◦, 90◦)., 

and ψ = 0◦
.. (b) h = 1., θinc = 0◦

., and ψ ∈ [0◦, 360◦).. (c) h = −1., θinc ∈ [0◦, 90◦)., and ψ = 0◦
.. 

(d) h = −1., θinc = 0◦
., and ψ ∈ [0◦, 360◦). 

.

s1 = s0 cosβ cosα

s2 = s0 cosβ sinα

s3 = s0 sinβ

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (26) 

The angles α . and β . appear in the Poincaré spinor 

.

l

φ
l

=

⎡

⎣

cos
l

π
4 − β

2

l

sin
l

π
4 − β

2

l

exp (iα)

⎤

⎦ . (27)
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With respect to a plane wave labeled “1”, the geometric phase of a plane wave 
labeled “2” is defined as the angle 

.o21 = Arg

l

l

φ
1

l†
·
l

φ
2

l

l

. (28) 
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Computational Plasmonics: Boundary 
Integral Equation Methods in Scattering 
Problems 

Christos Mystilidis, Guy Vandenbosch, and Xuezhi Zheng 

1 Introduction 

Maxwell’s equations supplemented by appropriate boundary conditions and (an 

often phenomenological) description of matter constitute all that is necessary to 

study even the most complicated of electromagnetic problems. The development, 

refinement, and application of methods to probe such problems numerically, when 

analytical approaches fall short due to complications of the geometry or the material, 

define the research domain of Computational Electromagnetics (CEM). We can 

boldly state that CEM is the workhorse of modern electromagnetics; the field enjoys 

an unprecedented level of maturity with numerous well-established recipes [1– 

3] being routinely employed and sharpened [4–8], further enabled by formidable 

hardware. The success of CEM has spilled from the scientific sphere and is felt by 

the general public (the ultimate goal and raison d’ être of every scientific discipline): 

CEM is instrumental for the design of modern telecommunication systems (such as 

massive MIMO and WIFI networks [9]). It is undoubtedly playing an essential role 

in forging modern society. 

The field of plasmonics concerns the study of collective free-electron oscillations 

(plasmons), initially in metals but also in more exotic materials [10] that support free 

carriers, and their coupling with electromagnetic radiation (plasmon-polaritons). 

Classical electromagnetics have been employed with impressive success in the 

nanoscale [11] to offer physical explanations to exotic optical phenomena: the 

squeezing of light in nanometric scales has allowed the overcome of the diffraction 
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Fig. 1 Illustration of a 

scattering problem. An 

external source, in the figure a 

current J (see the red arrow) 

occupies a volume in space 

Vs and radiates an incident 

field (see the red curved lines) 

in space. The incident field 

impinges on a scatterer, 

which occupies a volume V 

and induces a scattered field 

(see the blue curved lines) 

limit [12] and as such offers plenty opportunities for applications ranging from 

efficient light harvesting [ 13] to plasmonic-assisted chemical reactions [14], single 

molecule sensing [15], and promising biomedical applications [16]. CEM follows 

closely and is routinely updated to tackle problems in the nanoscale and the optical 

spectrum, a notable difference from its beginnings in microwave frequencies [17]. In 

this chapter, we discuss CEM applied in plasmonics and in particular in scattering 

problems. As is the conventional wisdom, we define such problems as follows. An 

object is illuminated by external sources, that is, currents and charges occupying 

a volume in space. The said sources generate an incident field, which impinges 

upon the object (the latter introduces an inhomogeneity in space due to different 

material properties from the background). Part of the radiation is transmitted inside 

the scatterer, while part of it is bouncing off its surface (the scattered field). The 

definition is shown in Fig. 1. 

Despite the great variety of computational algorithms that have been pub-

lished through the years, we can distinguish two main categories: differential 

equation-based (DE) and integral equation-based (IE) approaches. In the first, 

the discretization and subsequent manipulations to extract the solution concern 

the differential equations of the problem; the latter include an additional step 

of transforming the working differential to integral equations and subsequently 

attacking the resulting equations. DE-based algorithms (notably the Finite Element 

Method, FEM, and the Finite Difference Time Domain, FDTD) are characterized 

by high flexibility, being able to treat spatial and material inhomogeneities and 

nonlinearities [18]. From a technical side, the implementation of such codes is 

relatively straightforward and as such multiple instances of commercial software 

have appeared (such as Lumerical and COMSOL), which are used routinely by the 

community [11, 19, 20]. Further, such techniques can be applied easily to coupled 

systems of differential equations, allowing multiphysics simulations to be set up; 

this in turn renders them indispensable for semiclassical simulations, where the 

quantum mechanical nature of the electron gas is partially admitted through material 

differential equations [21, 22] (we will elaborate on this later) or in microwave 

heating studies [23].
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At the same time, such methods are unable to intrinsically account for infinite 

domain situations, which pertain exactly to the scattering problems at hand. The 

computational domain must be then closed with appropriate boundary conditions 

(such as scattering boundary conditions or Perfectly Matched Layers), which 

unavoidably introduce artifacts (though the relevant research has come a long way 

to minimize such issues [24]) and most importantly empirical decisions, which lack 

rigorousness. A potentially important drawback is the very high number of spatial 

or temporal samples required [18]. This issue is underlined in nanoscale scenarios 

where, as we mentioned before, extreme localization of the electromagnetic field can 

happen (close to geometrical singularities or nanoscopic gaps [21, 25]), far beyond 

the (optical) wavelength scale, requiring a locally very high mesh density. As such 

not only a refined but further an adaptive mesh is required. 

IE-based methods act in a complementary manner to DE-based ones. The 

reformulation of the initial problem in integral (or integrodifferential) equation 

format is achieved through the concept of Green’s functions [26], which are the 

impulse response functions of the electromagnetic system. The action of the infinite 

background is included in these functions naturally; there is no need to enter in 

empirical discussions or suffer artificial error. Of course, Green’s functions are 

analytically available only in certain setups (geometries and materials), effectively 

limiting the exploration space for such methods. Since Green’s functions account 

for the background, IE-based methods attack explicitly only the scatterer and as 

such result in Boundary Integral Equation (BIE) or Volume Integral Equation 

(VIE) formalisms. This is a particularly appealing characteristic in plasmonic setups 

where only the hotspot of plasmonic activity, the scatterer, is discretized; the 

number of unknowns is smaller (compared to DE approaches) and the method is 

close to the physics. The integral equations are transformed to linear (note that 

IE methods dealing with nonlinearities are quite more involved [27, 28]) systems 

routinely through the Method of Moments (MoM). MoM (and by extension BIE and 

VIE) is characterized by intense analytical work, is very accurate as the integral 

equations are formally exact, and requires quite sophisticated implementations. 

Hybrid methods harvesting the strong points of each family of methods have also 

been developed [18]. In this work, from all that pertains to CEM in scattering 

problem of plasmonics, we present BIE formalisms together with MoM. 

We can further distinguish two levels of accuracy when it comes to a CEM 

method. For one, there is (what we call) numerical accuracy: the CEM method 

has to be accurate with respect to the assumptions taken to set it up. For example, 

for a well-posed problem a numerically inaccurate CEM method is due to too 

sparse discretization or neglect proper treatment of the singularities or simply 

mistakes in the implementation thereof. At a more fundamental level there is the 

physical accuracy: the algorithm hinges upon a set of physical laws or reasonable 

models. When these equations fall outside of the range of their validity, it is 

reasonable to expect that the solutions provided by CEM would be inaccurate (no 

matter how meticulous an analysis or careful an implementation has been carried 

out). As we discussed in our first paragraph, the description of matter is often 

phenomenological. Typically, we assign a material response function, for example,
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a bulk permittivity, to a piece of material (this response function is the fingerprint of 

the said material). The past two decades have rendered plasmonic devices of ever-

decreasing size experimentally available [21, 29–32]. This shrinking has seriously 

challenged the constitutive equations (see (3) below): a bulk permittivity is not 

anymore capable of capturing adequately the material response, where quantum 

mechanical effects contribute significantly. In principle, a full quantum mechanical 

treatise should be used to extract the full solution. Nonetheless, the solution of 

Schrödinger’s equation for every degree of freedom of a nanoscopic system, in the 

deep nanometric (deep-nm) regime (1–10 nm), is a formidable computational task. 

Alternative ab initio approaches based on the Density Functional Theory (DFT), 

as the Time-Dependent DFT (TDDFT) shift the focus on the electron density, a 

collective property [33]; nonetheless, the exploration space of plasmonic devices is 

still severely limited. At the same time, it is worth asking whether it is possible 

to treat this regime (optical frequencies and deep-nm) as an intermediate one, 

where the conventional approach of Maxwell’s equations coupled with a material 

equation can accept quantum corrections (even if ad hoc) and explain accurately 

and intuitively experimental findings [ 10]. Indeed, semiclassical models appear as 

attractive alternatives: relatively simple, intuitive, and accurate (when applied with 

caution). Despite their relative simplicity, such models depart significantly from the 

standard base of macroscopic CEM recipes: a reconciliation of the CEM discipline 

with such models is highly sought for, with immense interest both from a numerical 

and engineering side for the obvious reasons, but also from the viewpoint of 

physicists as such methods constitute enabling technology for probing new physics. 

Here we focus on one such model, the Hydrodynamic Drude Model (HDM), 

which has become recently particularly popular among the nanoplasmonics commu-

nity; we motivate our choice more persuasively in the third section of our chapter, 

where we additionally present in detail a BIE formalism for nonlocal media within 

this model. 

For all our discussions below, we note that a harmonic e−iωt time dependence 

is assumed and subsequently suppressed throughout. The magnetic permeability of 

the scatterers is assumed equal to the vacuum unit value reflecting the very weak 

magnetic effects in optical frequencies in natural media (such as metals). We use 

Gaussian units; though this may alienate some readers, we wish to continue along 

the lines of the seminal works in BIEs in the field [ 34–36]. 

2 Boundary Integral Equation Formalism: Local Media 

In this section we discuss how to construct a BIE formalism and elaborate on the 

MoM and on critical details of the numerical implementation such as the notion of 

singularity extraction. 

We note that there are multiple integral equation formalisms pertinent to 

plasmonics [37–41], however we opt to follow the one presented by García de 

Abajo and Howie [25], developed explicitly for plasmonics and Electron Energy 

Loss Spectroscopy (EELS); there an electron beam passing by the vicinity (or even
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through [42]), the scatterer of interest is used to excite modes that conventional 

illumination by light cannot probe (and thus referred to as dark modes). This is a 

potential-based formulation. We motivate our choice by four reasons: 

1. [36] is very much celebrated among the plasmonics community as evidenced by 

the high number of citations of this work. 

2. [36] is the mathematical formulation behind the equally celebrated and used 

MATLAB toolbox MNPBEM [43]. 

3. [36] is the predecessor of a string of publications from our group [44–48], which 

extend the original method to treat nonlocal media (see Section 3). 

4. a potential-based formulation has particularly appealing advantages from a 

computational viewpoint and seems pertinent to quantum electromagnetics [49, 

50]. 

2.1 Potential-Based Formalism 

The first step is to recast Maxwell’s equations in a potential-based format. We 

assume that an electromagnetic field distribution arises in a homogeneous space 

due to the action of the external sources ρ and J, which in turn occupy a domain V. 

This distribution is a solution of the following set of equations 

.
∇ · D = 4πρ,∇ · B = 0,

∇ × E = ik0B,∇ × H = 4π
c

J − ik0D.
(1) 

As usual, E denotes the electric field, H the magnetic field, B is the magnetic 

induction, D is the electric shift, c is the speed of light in vacuum, and k0 is the 

free space wavenumber. 

The link between the fundamental (E, H) and the secondary (D, B) fields is the 

constitutive or material equations. As we have discussed, the assumption of very 

weak magnetism is tantamount to 

.B (r) = H (r) . (2) 

Above r is the position vector of an observation point in space.1 For the case 

of electric fields, we adopt a similar phenomenological approach to ( 2), however 

we allow the relative electric permittivity e to be frequency dependent (and the 

associated medium/metal chromatically dispersive), that is 

.D (r, ω) = ε (r, ω) E (r, ω) . (3)

1 We note that we include or neglect the arguments r and ω rather liberally; we include them when 

they are critical to the point made (e.g., the local character of (3)) and we neglect them to make the 

formalism friendlier. 
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Within the parlance of the nanoplasmonics community the equation above (admit-

tedly an equation most electrical engineers in the business of electromagnetics 

are very familiar with) is known as the Local Response Approximation (LRA). 

This can be easily appreciated as follows: the reason (electric field) gives rise to 

a response (electric displacement) exactly at the point of application r. It seems 

that the material (represented by e and unit permeability) does not admit any long-

range correlation [10]. Later we will relax such familiar but strict assumption to 

allow for a description of some scale regimes, deep in the nanometric scale that 

became experimentally accessible more recently and where such an assumption is 

ill-advised. 

For now, we will continue with the LRA (with which the reader is assumed to 

feel more comfortable) and we will introduce the scalar electric potential φ and 

the vector magnetic potential A in the manner conventional to electromagnetics 

textbooks [26] 

.E = ik0A − ∇ϕ, B = ∇ × A. (4) 

The ambiguity in the definition of the potentials is resolved by the Lorenz gauge 

.∇ · A = ik0εϕ, (5) 

which in turn enables us to construct wave equations for the potentials 

.∇2ϕ + k2ϕ = −4π
ρ

ε
,∇2A + k2A = −

4π

c
J, (6) 

where k = ω
√

μe = k0

√
e . is the wavenumber of the material occupying volume V. 

Equations (6) become the working equations, the ones we need to solve in order to 

find the electromagnetic fields in V. 

We include additional complexity by assuming now that the translational invari-

ance of the space V is interrupted by a surface B. In other words, an interface 

separates V in two regions, 1 and 2, as shown in Fig. 2. External sources may appear 

on one region, on both or neither. To reconcile the different potentials in each region, 

we introduce appropriate boundary conditions. It is well-known [36] that these are 

.ϕ1 = ϕ2, A1 = A2, (7) 

. 
∂A1

∂n
−nik0ε1ϕ1 =

∂A2

∂n
−nik0ε2ϕ2, ε1n · (ik0A1−∇ϕ1) = ε2n · (ik0A2−∇ϕ2) .

(8) 

Above, n is the vector normal to the interface (with direction from in to out; this is 

arbitrary but once a convention is set, it should be followed throughout) and ∂/∂n is 

the directional derivative along its direction. Equations (7) stem from the continuity
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Fig. 2 Illustration of Huygens’ principle. A boundary B separates Region 1 from Region 2 and 

the normal of the boundary points from Region 1 to Region 2. An external source J is in Region 

2. Equivalent sources, i.e., σ 1, h1 and σ 2, h2, that generate the correct scattered fields in Region 1 

and Region 2, are impressed on two fictitious boundaries, B1 and B2, which are just inside and just 

outside the boundary B 

of the tangential components of the E and H. The more involved (8) are statements 

of the Lorenz gauge and the continuity of the normal component of D. 

We have reformulated our electromagnetic problem in terms of potentials. We 

proceed with introducing the BIE formalism; this hinges upon the concept of 

Green’s functions. 

2.2 Boundary Integral Equation Formalism 

The sources that may exist in regions 1 and 2 create corresponding potentials (and 

of course, fields). The material contrasts on the interface introduce potentials due 

to scattering in either side. The total potential in each region is the superposition of 

these two contributions. To study them we will avoid discussing the external sources 

and the material contrasts explicitly. Instead, we will follow another way. 

Let’s momentarily retreat to the homogeneous space (though, as it will be made 

clear below, the same applies for a single region). We have defined Green’s functions 

as impulse functions for our electromagnetic system, formally [26] 

.∇2g
(

r, r') + k2g
(

r, r') = −4πδ
(

r − r') , (9) 

where g(r, r
'
) is the Green’s functions, δ(r − r

'
) is a Dirac delta, and r

'
is the position 

vector of a source point. In other words, g(r, r
'
) reveals the response at point r due 

to a point-like excitation at r
'
. We explicitly mention a homogeneous space, since 

then the analytical form of g(r, r
'
) is available [26] 

.g
(

r, r') =
eikr

r
, (10)
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for a 3D space and 

.g
(

r, r') =
16π

i
H

(1)
0 (kr), (11) 

for a 2D space. Above r = |r − r
' | is the distance between source and observation 

point and H
(1)
0 . is the Hankel function of the first kind. We note for later that when 

the observation point approaches infinitesimally the source point (or r → 0) both 

(10) and (11) become singular (the latter due to the logarithmic singularity of the 

Neumann function). 

Using the superposition principle, the action of a source distribution can be stated 

through Green’s functions. For externally applied charge and current sources, the 

resultant imposed potentials are 

.ϕe (r) =
1

ε

l

V

g
(

r, r') ρ
(

r') dr', Ae (r) =
1

c

l

V

g
(

r, r') J
(

r') dr', (12) 

where the integration is carried out on the source volume. These are actual sources. 

We can construct similar expressions for virtual or auxiliary ones. 

For the case of Fig. 2, we imagine two surfaces B1 and B2, contained by regions 

1 and 2, respectively, which are similar to the actual interface B2 . We further assume 

that charge and current distributions σ 1 and σ 2, and h1 and h2 lay on these surfaces. 

These sources are blind across the interface. In other words, they radiate exclusively 

in the region where they belong and there they reconstruct the scattered potentials 

(originally created by the interface and the material contrasts). Alternatively, we 

can think that these sources radiate as if in a homogeneous space, completely filled 

by the material of their attached region. However, the potentials (and fields) they 

construct in the region(s) they are not attached to are completely unphysical and 

should be dropped. By this line of reasoning, equivalent problems to the original 

one are built; their superposition reconstructs the sought after solution (the reader 

may have noticed that we have just described the Huygens equivalence principle; 

for a visual representation thereof see Fig. 3). 

Using the same token as in (12), the potentials constructed by these virtual 

sources are 

.ϕscat
i (r) =

l

Bi

gi

(

r, r') σi

(

r') dr', i = 1, 2, (13)

2 This is intuitive and pertains to the case of Fig. 2, however it is not necessary; note that the 

first step, where virtual sources are placed on surfaces attached to each region serves mostly an 

educational purpose. As we discuss below, eventually the two surfaces will fall onto the actual 

interface; the details of this limiting procedure are not of importance. Note that the particular 

shape of these auxiliary surfaces is essential for another (similar) method, the Method of Auxiliary 

Sources [51]; the ambiguity in the shape of the surfaces is the price to pay for bypassing surface 

integral singularities that we will encounter down the line. 
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Fig. 3 Illustration of the original problem (a) and the two associated equivalent problems (b), (c). 

In (a), the original problem: a scatterer with a permittivity ε1 sits in a space filled with a material 

whose permittivity, ε2, is shown. The scatterer occupies a volume, i.e., Region 1, while the rest 

of the space is as Region 2. A source current J is imposed in Region 2, and again two sets of 

equivalent sources σ 1, h1, and σ 2, h2 are impressed on two boundaries (see the dashed lines in (a)) 

just inside and outside the boundary of the scatterer to correctly account for the scattered field. In 

(b) and (c), the two equivalent problems are demonstrated. The equivalent problem 1 in (b) (2 in  

(c)) assumes that σ 1, h1 (σ 2, h2) are the sources that radiate into a homogeneous space, which is 

filled by the material of Region 1 (Region 2), and can generate the true scattered fields in Region 1 

(Region 2) 

and 

.Ascat
i (r) =

l

Bi

gi

(

r, r') hi

(

r') dr', i = 1, 2. (14) 

In each region, the total potentials are then 

.ϕi = ϕe
i + ϕscat

i , (15) 

and 

.Ai = Ae
i + Ascat

i . (16) 

Through a limiting procedure B1 and B2 overlap with each other and eventually 

with B. Then, (13) and (14) cannot be arbitrary but have to abide by the working 

principles, which are the boundary conditions (7) and (8) we presented above. 

Combining (12), (13), (14), (15), and (16) with the boundary conditions (7) and 

(8) we get 

.

l

B1

g1

(

r, r') σ1

(

r') dr' −
l

B2

g2

(

r, r') σ2

(

r') dr' = ϕe, (17) 

and 

.

l

B1

g1

(

r, r') h1

(

r') dr' −
l

B2

g2

(

r, r') h2

(

r') dr' = Ae, (18)
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and 

. 

l

B1

∂g1(r,r')
∂n

h1

(

r') dr' −
l

B2

∂g2(r,r')
∂n

h2

(

r') dr'

− nik0

l

ε1

l

B1
g1

(

r, r') σ1

(

r') dr' − ε2

l

B2
g2

(

r, r') σ2

(

r') dr'
l

= α
e,

(19) 

and 

. 

ε1

l

B1

∂g1(r,r')
∂n

σ1

(

r') dr' − ε2

l

B2

∂g2(r,r')
∂n

σ2

(

r') dr'

− n · ik0

l

ε1

l

B1
g1

(

r, r') h1

(

r') dr' − ε2

l

B2
g2

(

r, r') h2

(

r') dr'
l

= De.

(20) 

The quantities φe, Ae, αe, and De are all due to the excitation (as indicated by the 

superscript). They are defined as 

.ϕe = ϕe
2 − ϕe

1, Ae = Ae
2 − Ae

1, (21) 

.α
e =

∂Ae
2

∂n
−

∂Ae
1

∂n
+ ik0n

(

ε1ϕ
e
1 − ε2ϕ

e
2

)

, (22) 

.De = n ·
l

ε1

(

ik0Ae
1 − ∇ϕe

1

)

− ε2

(

ik0Ae
2 − ∇ϕe

2

)l

. (23) 

We have reached what we have set for: Eqs. (17), (18), (19), and (20) are all  

boundary integral equations (notice the surface integrals involved); the system 

consists of two scalar and two vector equations for an equal number of unknowns 

and is, in principle, solvable. To solve it, we will employ a standard MoM, however 

it is necessary to simplify our formalism, which is admittedly rather cumbersome. 

We introduce the following operators: 

.

Gif =
l

Bi
gi

(

r, r') f
(

r') dr', i = 1, 2,

Hif = ∂
∂n

Gif =
l

Bi

∂gi(r,r')
∂n

f
(

r') dr', i = 1, 2,
(24) 

where f is the equivalent charges or a cartesian component of the equivalent 

currents, which render the formalism much more appealing. Using (24) in (17), 

(18), (19), and (20) we get [36] 

.G1σ1 − G2σ2 = ϕe, (25) 

.G1h1 − G2h2 = Ae, (26)
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.H1h1 − H2h2 − nik0 (ε1G1σ1 − ε2G2σ2) = α
e, (27) 

.ε1H1σ1 − ε2H2σ2 − n · ik0 (ε1G1h1 − ε2G2h2) = De. (28) 

We proceed with discretizing the boundaries and performing the MoM. 

2.3 Method of Moments 

The importance of the MoM in CEM cannot be overstated. Numerous textbooks or 

educational papers are written explicitly or contain chapters for it. It is not our goal 

to review its essential steps, but rather present them for the case we are interested 

in here. The transformation of the integral to linear equations is the same for each 

of (25), (26), (27), and (28). As such, we present it exclusively for (25) to avoid 

repetition. 

The first essential step is to expand the charges on each side of the interface 

(see Fig. 2) in terms of appropriate basis functions. There is no recipe for choosing 

such functions; one needs to guess functions that approximate the best the actual 

behavior of the function to be expanded (e.g., they should vanish at the ends of a 

wire antenna). At the same time, they should be simple enough in order to facilitate 

both analytical manipulations and further (and perhaps most importantly) numerical 

evaluation. As such, a compromise is often made. Since the scatterer whose surface 

is to be discretized is deeply subwavelength, the basis functions are supported 

by elements whose maximum dimensions is much smaller than the excitation’s 

wavelength. As such, simple pulses can be used to approximate locally the charges 

and currents. In particular, 

.

σ1 (r) =
N
E

i=1

aipi (r) ,

σ2 (r) =
N
E

i=1

bipi (r) ,

(29) 

where 

.pi (r) =
l

1, r ∈ ABi

0, r /∈ ABi
, (30) 

ai and bi are the weights and N the number of basis functions chosen to cover 

the surface of the scatterer. In turn, the surface is discretized in N subdomains 

(subsurfaces) ABi 
3 . Substituting (29) and (30) into (25) does little to solve the

3 To be more precise, triangles for 3D scatterers and linear segments for 2D ones. 
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problem. On the contrary it creates a single equation with 2N unknowns. In order 

for (29) to be a formal approximation of σ 1 and σ 2 a certain index must be 

selected. In MoM we select to minimize the weighted residuals. We select a set 

of testing functions. Their selection can be arbitrary; however it is convenient 

(and often beneficial, assuming that we can exploit orthogonality properties certain 

basis/testing functions may dispose) to assume a Galerkin approach, according to 

which the testing function has the same form as the basis functions do. Here 

.tj (r) = pj (r) , (31) 

where j = 1, . . . , N an independent index from i. We subsequently take (25), 

multiply by tj and integrate along each element that supports tj. This results in (we 

use the formalism of (17) for clarity) 

. 

l

AB1,j
tj (r)

l

B1
g1

(

r, r')
N
E

i=1

aipi

(

r') dr'dr

−
l

AB2,j
tj (r)

l

B2
g2

(

r, r')
N
E

i=1

bipi

(

r') dr'dr =
l

AB1,j
tj (r) ϕe (r) dr,

(32) 

or (using (30), exchanging the sum and integral signs, and admitting B1 → B2 → B) 

. 

l

ABj
pj (r)

N
E

i=1

ai

l

ABi
g1

(

r, r')pi

(

r') dr'dr

−
l

ABj
pj (r)

N
E

i=1

bi

l

ABi
g2

(

r, r') pi

(

r') dr'dr =
l

ABj
pj (r) ϕe (r) dr,

(33) 

where ABj are the subsurfaces for the testing (observation) and ABi for the basis 

(source). We introduce the following matrices, using additionally (30) 

.V
l

vj

l

, vj =
l

ABj

ϕe (r) dr, (34) 

the N × 1 excitation vector, a[ai] and b[bi] the two  N × 1 coefficient vectors, and 

.

Za

l

za
ij

l

, za
ij =

l

ABj

l

ABi
g1

(

r, r') dr'dr,

Zb

l

zb
ij

l

, zb
ij =

l

ABj

l

ABi
g2

(

r, r') dr'dr,
(35) 

the two N × N reciprocal capacitance matrices, leading to 

.Zaa + Zbb = V. (36)
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We evaluate (34) and (35) purely numerically; the integrands are well-behaving 

functions in the bounded subsurfaces ABj and ABi. The exception is when the 

two different subsurfaces coincide (the observation points fall on the source points) 

when the singular behavior of the Green’s function reveals itself. We will give 

details in the next subsection. We note that a similar procedure can be carried out 

for all remaining integral equations; the result is the linear system we have been 

discussing from the start. There are numerous recipes to solve such systems, direct 

or iterative, which for well-conditioned system are equivalent4 . 

2.4 Singularity Extraction 

In this subsection we will discuss the special treatment of the case when an 

observation point/surface/linear segment coincides with a source one. Then, as can 

be easily seen from (10) (the same applies for (11); the 3D case will be our example 

here) the Green’s function becomes singular (r = 0 is a pole for this function) 

and the matrix elements (35) diverge. If we could locate the pathological terms, 

extract them from the integrand of (35), apply a quadrature for the residue and 

attack analytically the pathology, our problem would be solved. This is exactly what 

a singularity extraction method is, and there are numerous such instances in the 

literature [52–55]. 

As such, we Taylor expand the exponential in the numerator of (10) around r = 0, 

getting 

.
eikr

r
=

1

r
+ ik −

k2

2
r −

ik3

6
r2 + O

l

r3
l

. (37) 

Above, the big-oh O symbol means that r3 is the next leading term in the Taylor 

series. We recognize the pole in the first term. As such, we write the elementary (but 

so essential in the singularity extraction method) relation 

.
eikr

r
=

l

eikr

r
−

1

r

l

+
1

r
, (38) 

where the first term is analytic in r = 0 (the pole degenerates to a removable 

singularity) and as such is integrated numerically, while the second analytically,

4 The direct linear equation solvers have an easier implementation; the iterative solvers require a 

reasonable first guess, which may be hard to find. On the other hand, iterative solvers tend to be 

faster, asymptotically behaving like O(MN), where M is the number of iterations versus O(N2) 

for the direct. A MoM nonetheless (especially for the tiny physical system we discuss herein) is 

associated with dense but of low rank matrices. The asymptotic behavior is not reached, and the 

efficiency benefits are not really felt. 
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based on well-established formulas, depending also on the shape of elements [52– 

55]. 

The method we showcased above is sufficient for most purposes. Let’s linger 

around (38) a bit more. Though the first term has avoided the singularity, it has 

a discontinuous first derivative. Naturally, we prefer to feed numerical integrators 

smooth integrands to improve convergence. Removing and subsequently adding 

another term is along this line of reasoning, eventually writing 

.
eikr

r
=

l

eikr

r
−

1

r
+

k2r

2

l

+
1

r
−

k2r

2
. (39) 

Now, the first term has a continuous first derivative, since it behaves from ( 37) as  r2. 

The second term is analytically handled as before. 

3 Boundary Integral Equation Formalism: Nonlocal 

Corrections 

In this section we discuss the ramifications the admission of the nonlocal character 

of the electron gas in metals has in the BIE formalism we presented in the previous 

section, as well as in the numerics. The HDM is used to include nonlocality in the 

material response. 

3.1 The Hydrodynamic Drude Model 

The HDM has a long history with significant and many contributions during the 

1960s, 1970s, and 1980s [56–60], a relative slowdown during the 1990s and 2000s, 

and subsequent resurgence that is still going strong [21, 61–67]. The HDM is 

conceptually very simple: the electron gas is treated as charged fluid, which is driven 

by the quantum (or exclusion) pressure, a result of the Pauli exclusion principle [68] 

and the fact that the electron gas is compressible [10]. Thus, a classical convective 

flow equation is used to account for a quantum mechanical effect [ 65]. The material 

equation is [68], 

.
β2

ω (ω + iγ )
∇

(

∇ · Pf (r)
)

+ Pf (r) = −
1

4π

ω2
p

ω (ω + iγ )
E (r) , (40) 

where Pf is the free-electron polarization density, γ is the phenomenological 

damping rate (γ ∝ τ−1, the scattering time of free-electrons), which includes 

various sources of loss, ωp is the plasma frequency, and β =
√

3/5υF . is the 

hydrodynamic parameter, here with the high-frequency (ω >> γ ) value [69]. It is 

clear, that the strength of the nonlocal effect is determined by β. Nonetheless, far



Computational Plasmonics: Boundary Integral Equation Methods in Scattering. . . 209

from a fitting parameter, β is a physical constant of the system. If we, however, 

chose to take β → 0, then the local and very familiar Pf (r) = χ f (ω)E(r), where 

χf (ω) = − ω2
p

[4π(ω2+iωγ )]
,. the Drude susceptibility, is recovered. We finally note 

that the nonlocal character of (40) is evident by the spatial derivatives that act on Pf , 

while the quantum nature of the correction the first term brings is admitted by the 

Fermi velocity. Equation (40) must be coupled to (1) (or most often to the electric 

wave equation) to acquire the behavior of the semiclassical material. 

The discussion revolving around (40) concerns exclusively free electrons. Bound 

electrons exist in noble metals (the primary materials of application of HDM) and 

they offer an alternative interaction between light and matter [69], which is often 

treated locally (though more recent works argue for a more rigorous approach [22]), 

as follows 

.Pbd (r) = χbd (ω) E (r) . (41) 

Above, Pbd is the bound-electron polarization density and χbd is the accompanying 

bound-electron susceptibility; this is either inferred from experimental data [70, 71] 

or is described by more complicated (e.g., Lorentz-Drude) models [72, 73]. 

The HDM is used in our work both for its simplicity (analytical or semi-

analytical solutions are available for this semiclassical model [57, 63, 74–76]) but 

also for its accuracy with respect to experimental findings. In particular, HDM when 

applied to systems consisting of noble metals (such as gold and silver, essential 

building blocks for plasmonic architectures) is able to predict limitations to the 

near-field enhancement [ 21], spectrum shifts of the scattering/absorption cross-

sections [77–79], and further the existence of longitudinal modes [80], which 

are homogeneous solutions of the Maxwell’s equations, should one admit the 

wavevector dependence of the permittivity [81]. From an engineering perspective, 

despite the possibly dense vocabulary of new terms we used above, the HDM is 

quite close to the classical picture: multiple (and significant) quantum mechanical 

phenomena are not accounted for, such as quantum tunneling and electron spill-out 

[68]. The latter is equivalent to introducing hard-wall boundaries, as in the classical 

perception. Though these simplifications render HDM conceptually simpler, they 

are the reasons behind significant shortcomings of applications of HDM in alkali 

metals [82, 83]. 

3.2 Potential-Based Formalism for Nonlocal Media 

We aim here to introduce the potential-based formalism we described before for 

the case of nonlocal media. As before, we start with a very simple geometry of 

a homogeneous space filled with a nonlocal material. Sources ρ and J may exist 

in a domain Vs; however, to simplify the analysis, we assume a source-free space. 

The admission of the nonlocal character of the material, which is equivalent to the
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admission of a wavevector dependence of the permittivity, gives rise to additional, 

longitudinal solutions for the Maxwell’s Equations in (1). As such, the total field 

F has two components: a transverse (predicted classically) and a longitudinal 

(predicted due to nonlocality). Transverse and longitudinal fields are not coupled 

with each other (but are reconciled at the interface to be discussed later) and as such 

the Helmholtz theorem can be applied 

.F = FT + FL. (42) 

Note, that assuming that (2) still holds (with the same rationale as before), (42) con-

cerns exclusively electric fields. Transverse and longitudinal are characterizations 

based on the following differential relations 

.∇ · FT = 0,∇ × FT /= 0, (43) 

and 

.∇ · FL /= 0,∇ × FL = 0. (44) 

From (43) we can appreciate the Gauss law as the origin of the transverse behavior 

of classical waves, while from (44) we can appreciate the semi-static nature of 

the longitudinal plasma waves; (44) provides an important hint for the potentials 

selected to represent such fields. 

Based on (42) we can construct two independent sets of Maxwell’s equations: 

one for the transverse distribution (from this point forward F = E) 

.
∇ · DT = 0,∇ · BT = 0,

∇ × ET = ik0BT ,∇ × HT = −ik0DT ,
(45) 

and one for the longitudinal distribution 

.
∇ · DL = 0, BL = 0,

∇ × EL = 0, ik0DL = 0.
(46) 

Let us analyze each system, (45) and (46), further. For (45), the constitutive relations 

read 

.DT = ET + 4πPT
f + 4πPT

bd , (47) 

.PT
bd = χbdET , (48) 

.PT
f = χT

f ET = −
1

4π

ω2
p

ω (ω + iγ )
ET . (49)



Computational Plasmonics: Boundary Integral Equation Methods in Scattering. . . 211

We can introduce a total transverse permittivity by combining the separate contri-

butions of (47) as follows: 

.DT = εT ET , (50) 

where 

.εT = 1 + 4πχbd −
ω2

p

ω (ω + iγ )
. (51) 

We can then construct a wave equation for the electric field as per usual 

.∇ × ∇ × ET − k2ET = 0. (52) 

For the longitudinal system (46) the constitutive relations become 

.DL = EL + 4πPL
f + 4πPL

bd , (53) 

.PL
bd = χbdEL, (54) 

.
β2

ω (ω + iγ )
∇2PL

f + PL
f = −

1

4π

ω2
p

ω (ω + iγ )
EL. (55) 

As for the transverse case, we can derive a wave equation for EL. This is  

.∇2EL + κ2EL = 0. (56) 

Above [65] 

.κ2 =
1

β2

l

ω2 + iωγ −
ω2

p

εbd

l

, (57) 

is the longitudinal wavenumber and ebd = 1 + 4πχbd is the bound-electron 

permittivity. We note that the longitudinal wavenumber remains predominantly 

imaginary below the plasma frequency, with the real part emerging (and dominating) 

beyond it [84]. As such longitudinal modes are evanescent in the frequency regime 

below the plasma frequency and become propagating above it. Though this may 

seem like an argument against incorporating such fields in the optical response 

in the first frequency regime, we will see in the examples that nonlocality affects 

spectra even around the dipole resonance (situated at ωp/
√

3. for a simple-metal 

spherical scatterer). It is interesting to discuss the magnitude of κ or rather, the 

associated wavelength. This, for noble metals and in the optical frequencies we are
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interested in, is below 1 nm [85]. Later, we will discuss the important complication 

this causes to numerics. Further, the mere existence of a longitudinal wavenumber 

makes a clear statement: despite the semi-static nature of longitudinal modes, (44), 

and (56) are accounts of the dynamics of such systems (see [62] for an account 

of the consequences should one fully embrace, at first glance reasonable, the full 

quasistatic approximation). 

Naturally, we are more interested in reformulating (45) and (46) in terms of 

appropriate potentials. Since (45) is identical to (1) (with elimination of the sources), 

we anticipate that the transverse potentials will be very similar in definition to the 

local ones we defined in ( 4), (5), and (6). As such, our main task is to deduce 

potentials for the longitudinal modes. Exploiting their curl-free nature, we introduce 

.EL = −∇ϕL. (58) 

The computational benefits of the potential-based formalism, evident from the 

local case, are here underlined. The emergence of an additional degree of freedom 

(longitudinal modes) is accompanied by increased computational cost. Nonetheless, 

the approach presented here seems to alleviate to an extent the problem: a single 

scalar is all that must be additionally calculated. This scalar function satisfies 

another wave equation, in particular 

.∇2ϕL + κ2ϕL = 0. (59) 

To recapitulate, in a region of space filled with a nonlocal material we introduce 

three potentials: A, ϕ, and ϕL. The latter two are combined to give the total potential 

ϕ
tot = ϕ + ϕ

L. We underline that the possibility to introduce longitudinal and 

transverse potentials separately is enabled by the independence of the respective 

field distributions far from interfaces. 

Let us depart from the homogeneous space and introduce an interface, splitting 

effectively the space in two regions 1 and 2; region 1 remains nonlocal5 , however 

we fill region 2 with a local medium, essentially simulating an architecture 

where a metallic nanoparticle is enveloped by a local background (say vacuum). 

Boundary conditions must be then applied at the interface to reconcile the wave 

equations we derived. As a new degree of freedom has arisen, we expect that an 

additional boundary condition (ABC) will be needed to render the system solvable. 

Alternatively, it is only natural to supplement the new differential equation in (40) 

with a boundary condition. As such, we maintain the boundary conditions (7) 

and (8), though including ϕL
1 . (region 2 is local and as such does not support a 

longitudinal mode nor potential), in particular

5 All our analysis holds should we invert the nature of the regions, i.e., from nonlocal—local to 

local—nonlocal. 
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.ϕ1 + ϕL
1 = ϕ2, A1 = A2, (60) 

.

∂A1
∂n

− nik0ε1ϕ1 = ∂A2
∂n

− nik0ε2ϕ2,

ε1,bdn ·
(

ik0A1 − ∇
l

ϕ1 + ϕL
1

l)

= ε2n · (ik0A2 − ∇ϕ2) .
(61) 

Note that the longitudinal potential is not involved in the first Eq. ( 61), as it 

is not involved in the Lorenz gauge. The second Eq. (61) is derived, as is the 

second equation of (8), from the continuity of the normal component of the electric 

displacement. However, only what concerns the bound electrons is involved in 

region 1. This puzzling aspect of (61) is resolved immediately upon revelation of 

the pertinent ABC. 

The best choice of ABCs has been the subject of a recent review [86] and of 

numerous older papers in the 1970s and 1980s [58, 81, 87–89]. However, the choice 

is not arbitrary: it has to be derived from the physical arguments that were used to 

derive (40), that is, the ABC must be consistent with the material equation [62]. 

The statement we made earlier, that in the HDM electron-spill out is suppressed, 

essentially a hard-wall assumption, is equivalent to the Sauter ABC at the boundary 

B [86] 

.n · Pf = 0. (62) 

This is the reason there is no free-electron contribution regarding region 1 in the 

second Eq. (61). The potential reformulation of (62) is  

.χ1,f n · (ik0A1 − ∇ϕ1) +
ε1,bd

4π
n · ∇ϕL

1 = 0, (63) 

where χ1, f is the transverse free-electron susceptibility (given by the Drude model). 

3.3 Boundary Integral Equation Formalism 

As for the local case, the main aim is to construct surface integral equations for the 

newly defined potentials. We repeat the geometry in Fig. 4, which is identical to 

that of the local case. However we assume that a region (say, region 1) is filled 

with a nonlocal medium (for the physically hard to interpret nonlocal-nonlocal 

case, see [47, 48]). As before, auxiliary sources, charges σ 1 and σ 2 and currents 

h1 and h2 are placed on two surfaces B1 and B2 just inside region 1 and region 

2, respectively. As we have mentioned before, these sources radiate as if in a 

homogeneous space; they produce meaningful results only in their attached region 

(their results in the rest region(s) are discarded). Eventually, the total potentials (and 

fields) are a superposition of the contribution of all sources.
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Fig. 4 Illustration of 

Huygens’ principle for a 

boundary that encloses a 

nonlocal medium. The whole 

setup is the same as the one in 

Fig. 2 with the only 

difference that an equivalent 

source σL
1 . is imposed on B1 

to take the longitudinal wave 

into account 

Following from the Helmholtz decomposition, and the independence of trans-

verse from longitudinal (and vice versa) fields, we distinguish between sources 

that generate exclusively transverse fields and sources that generate exclusively 

longitudinal fields. The first are actually the ones we have already discussed. The 

latter we call longitudinal charges σL
1 . (such charges should be placed on appropriate 

surfaces in all regions filled with nonlocal media). They radiate in the same manner 

as the transverse charges and sources and their radiation is captured by a Green’s 

function, that is 

.ϕ
L,scat
1 =

l

B1

gL
1

(

r, r') σL
1

(

r') dr', (64) 

where the longitudinal Green’s function gL
1 . is defined as in ( 10) or (11), with the 

wavenumber given by (57). This simple statement in concert with our discussion 

about the magnitude of the longitudinal wavenumber betrays serious numerical 

complications in modeling nonlocal media. In particular, in such media, we have 

to resolve (in terms of the spatial discretization used) the transverse waves, with 

the length scale defined by the wavelength of the incident field (subwavelength 

scale) and the longitudinal ones, with the length scale defined by the longitudinal 

wavelength (subnanometric scale). A nonlocal simulation is, by its very nature, 

a multiphysics and multiscale numerical effort [68]. By using a BIE, that is, by 

focusing exclusively on the boundaries of the architecture we avoid the burden 

of reconciling two different length scales and the concomitant adaptive meshing 

that FEM implementations have reported [90]. At the same time, taking into 

consideration that the effects of nonlocality manifest strongly within angstroms 

inside the interface (defined by the aforesaid nonlocal length scale) a surface 

approach, as the one discussed here, seems close to the physics [85]. As such the 

computational benefits of a BIE approach are underlined in a nonlocal setting and 

the adoption of such a method seems motivated by the physics of the problem. 

Returning to the formulation and using the same argument in favor of simplicity 

as before, we introduce the operator 

.GL
1 f =

l

B1

gL
1

(

r, r') f
(

r') dr', (65)
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which acts on the arbitrary scalar function f, which here represents longitudinal 

charges. Performing the limiting procedure B1 and B2 → B, we reconcile all 

included sources via the boundary conditions (60), (61), and (63). In this manner, 

upon introduction of (24) and (65) we acquire our modified system of BIEs 

.G1σ1 + GL
1 σL

1 − G2σ2 = ϕe, (66) 

.G1h1 − G2h2 = Ae, (67) 

.H1h1 − H2h2 − nik0 (ε1G1σ1 − ε2G2σ2) = α
e, (68) 

.ε1H1σ1 − ε2H2σ2 − n · ik0 (ε1G1h1 − ε2G2h2) = De, (69) 

.4πχf,1 (n · ik0G1h1 − H1σ1) + εbd,1H
L
1 σL

1 = 0. (70) 

We solve the system (66), (67), (68), (69), and (70) (note that these three scalar 

and two vector equations are used to extract an equal number of scalar and 

vector variables) using the MoM we have described previously. We use pulse 

basis functions for the expansion of σL
1 . using the same rationale as before: for 

sufficiently dense discretization (this means here resolving the subnanometric rather 

than subwavelength field variations; see [ 48] for a nice graphical depiction of this 

statement) the longitudinal charge can be considered piecewise constant. In the next 

section, we show certain examples that result by the algorithm we described in this 

and the previous sections. 

4 Examples 

In this section, two examples are demonstrated. For the first, we consider a sodium 

(Na) sphere. The radius of the sphere is 2 nm. The sphere is excited by a normally 

incident TM (transverse magnetic) polarized plane wave (see the inset of Fig. 5a). 

The frequency of the incident field spans from 3 to 8 electron volts (eVs) with 

201 sampling points in the range. Two material models are considered: one is a 

local response model (the Drude model with a plasma frequency 5.89132 eV and 

a damping rate 0.1 eV); the other is the nonlocal hydrodynamic model (where the 

Fermi velocity is 1.06 × 106 m/s). 

We compare the absorption and scattering cross-sections [91] from the discussed 

BIE implementation with the Mie theory. It can be seen from Fig. 5 that the results
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Fig. 5 Comparison between the results from the discussed BIE algorithm and the Mie theory for 

the scattering of a sodium (Na) sphere. In (a)–(d), the absorption cross-sections and the scattering 

cross-sections are demonstrated. The results from the BIE algorithm are marked by blue dashed 

lines, while the ones from the Mie theory are marked by red dashed lines. The scattering problem 

is illustrated in (a). In (a) the main resonance is highlighted by a red circle, while the resonances of 

the longitudinal modes are highlighted by a blue and a green circle. The electric field distributions 

at these resonances are shown in (e). There, the magnitudes of the fields are shown and coded by 

the colors from blue to yellow 

agree well for both the local and the nonlocal cases. To quantify, we define relative 

errors, 

.errsca =
l

lσMie
sca − σBEM

sca

l

l

σMie
sca

× 100%, errabs =
l

lσMie
abs − σBEM

abs

l

l

σMie
abs

× 100%. (71) 

For the local case, the maximum relative error of the scattering cross-sections 

and the one of the absorption cross-sections are 3.9%0 and 1.3%0. For the nonlocal 

case, the maximum relative errors are 5%0 and 0.4%0. We also evaluate the electric 

fields at resonances and compare the fields evaluated numerically with the ones by 

the Mie theory. For this, we define a relative error, 

.err|E| =
l

l

l

lEMie
l

l −
l

lEBEM
l

l

l

l

l

lEMie
l

l

× 100%. (72) 

For the local case, the electric field distribution (see the first row of Fig. 5e) at  

the main resonance (i.e., 3.4 eV) exhibits a maximum relative error of 0.35%0. For  

the nonlocal case, the electric field distribution (see the second and the third row of 

Fig. 5e) at the resonance of longitudinal modes (i.e., 6.7 eV and 7.7 eV) exhibits a 

maximum relative error of 0.04%0 and 0.02%0.
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Fig. 6 Scattering of a gold (Au) dimer for different gap sizes. (a) shows the configuration of the 

scattering problem and (b) illustrates the spectral positions of the main resonances in the scattering 

spectra of the dimers with difference gap sizes. For the local response model, the positions are 

marked by the blue circles, while for the nonlocal model, the positions are marked by the red 

squares. The magnitudes of the electric fields on a cut, which is marked by the black dashed lines 

in (a), in the mid of the gap region are plotted in (c) for the gap sizes of 1 nm, 3 nm, and 5 nm 

at the corresponding resonances. The magnitudes of the fields are coded by the colors from blue 

to yellow. The cut is square with a side of 51 nm and the cut is discretized by triangles (whose 

maximum area is 0.5696 nm2) and the electric fields are evaluated at the centers of the triangles 

For the second, we look at gold (Au) dimers with different gap sizes. Here, the 

radius of the spheres is 20 nm and we consider five gap sizes (see g in Fig. 6) 

from 1 nm to 5 nm with 1 nm as a step. The dimers are excited by a normally 

incident TM (transverse magnetic) polarized plane wave (see the inset of Fig. 6a). 

The wavelengths of the plane waves span from 400 nm to 800 nm with 81 sampling 

points in between. Au is modeled by both the local and the nonlocal models with 

the effects of bound electrons taken into account (see the relevant parameters in 

[72] and for the Fermi velocity 1.40 × 106 m/s). On the one hand, we extract the 

wavelengths of the main resonances in the scattering spectra of the dimers (see Fig. 

6a). For small gap sizes, we indeed see a systematic blue shift when comparing 

the resonant wavelengths of the nonlocal model with the ones of the local model. 

Eventually, for the gap size of 5 nm, the difference vanishes, which agrees well with 

previous studies [21, 90]. Further, we plot the electric field distributions on a cut 

in the middle of the gap region (see the black dashed lines in Fig. 6a) for the gap 

sizes of 1 nm, 3 nm, and 5 nm (see Fig. 6b). Especially, for the gap size of 1 nm and 

the nonlocal model, the maximum electric field enhancement (with respect to the 

magnitude of the incident field which is assumed to be 1) is reduced with respect to 

the local response model (from 90 to 70), which is due to the fact that the quantum 

pressure included in the nonlocal model tends to smoothen field singularities.
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5 Conclusion 

We reviewed a potential-based BIE method particularly tailored to plasmonics. 

Though each step was presented for the method at hand, the line of reasoning 

remains the same for other methods of the same category (e.g., construction of 

BIEs, MoM, singularity extraction). Under the relatively new lens of semiclassical 

models, which admit the quantum nature of electrons, something necessary at the 

length scales that contemporary plasmonic research is dwelling, and in particular 

the HDM, BIE methods appear as a very strong and even natural candidate. As 

HDM changes essentially only the charge distribution (and also near-fields) close to 

the interface, a method that focuses exactly on the surface seems to be particularly 

fitting. Despite the objective limitations by the potential lack of knowledge of the 

Green’s function, the method shown herein and BIEs in general, are able to tackle 

plasmonics problems that monopolize the interest of the community, such as the 

spherical dimer we showcased in the second example and thus prove themselves as 

essential tools for the nanoplasmonics community. 
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On a List of Problems for Research 
in Generalized Lorenz-Mie Theories, 
More Generally T-Matrix Approach for 
Structured Beams: The State-of-the-Art 

Gérard Gouesbet 

1 Introduction 

The generalized Lorenz-Mie theory (GLMT), stricto sensu, describes the interaction 

between an incident structured electromagnetic beam (specifically a laser beam) and 

a homogeneous spherical particle, therefore generalizing the classical Mie theory 

dated 1908 [1, 2] devoted to the case of plane wave illumination to the case when 

the particle is illuminated by a laser, e.g., [3, 4] and references therein dating 

back to 1982 [5]. The expression “generalized Lorenz-Mie theory” is used more 

generally to deal with the interaction of laser beams with particles having a sufficient 

degree of symmetry to allow the use of the method of separation of variables to 

deal with Maxwell’s equations, namely, multilayered spheres [6, 7], cylinders with 

circular and elliptical cross-sections [8–11], assemblies of spheres and aggregates 

[12], spheres incorporating an eccentrically located spherical inclusion [13, 14], and 

spheroids [15–17], to quote a few papers devoted to these different particles, see 

as well references therein. An entry for more complete references to these different 

opportunities is available from a textbook [18], and from review papers such as [19– 

21], and references therein, with the consequence that GLMT may be used with the 

plural GLMTs. 

While the GLMTs are rigorous analytical theories, there exist another approach 

most often named the Extended Boundary Condition Method (EBCM), but which 

can as well be called the Null-Field Method [22], usually denoted as a semi-

analytical method, and which can deal with symmetrical particles allowing one to 

use the method of separation of variables, but which can deal as well with other 
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kinds of less symmetrical particles [23, 24], although it can become ill-conditioned 

for the case of highly elongated or flattened particles [22–27]. 

Both GLMTs and EBCM have a common point, namely, that the incident beam is 

expanded in terms of vector spherical functions, more particularly in terms of Vector 

Spherical Wave Functions (VSWFs) in the case of spherical coordinates. Moreover, 

“EBCM” is very often taken as synonymous of “T-matrix method.” As discussed 

by several authors, such as Doicu et al. [22], Bates and Wall [28], Hackman and 

Lim [29], Doicu and Wriedt [30], Nieminen et al. [27, 31], Zakharova et al. [32], 

Alonso et al. [33], with a somewhat extended discussion in the introduction of [20], 

this identification, although traditional, may be misleading. Indeed, it happens, for 

instance, that the GLMT as well is a T-matrix method, e.g., [34, 35], a feature which 

may provide a better understanding of the title of the present paper, see as well pages 

266–268 in [18]. 

Now, it happens that, in 2012, the Optical Society of America celebrated the 

50th anniversary of Applied Optics, and then provided an open access to the 50 

most cited Applied Optics articles of all time, a listing of the 50 most published 

authors in Applied Optics of all time, and published three special issues to end its 

retrospective of Applied Optics’ 50 years. Gouesbet and Lock, pertaining to the Top-

50 list of the most-published authors, have then been invited to prepare an article, 

which has been published in 2013 [36]. This article, with 230 references, discussed 

35 problems for future research in GLMTs (and EBCM). After more than a decade, 

the present chapter discusses these problems, some having been solved while others 

have not been solved or have not been considered, therefore providing the state-of-

the-art of the current situation. New problems are discussed as well. It is to be noted 

that, while the original paper was signed by two authors, the present one is signed 

by one author only, the reason why being available, which much regret, from [37]. 

2 Old Problems 

2.1 Problem 1 

See subsection 2.B of [36]. In GLMTs and EBCM, the incident fields are expanded 

over a set of basis functions, namely, VSWFs when spherical coordinates are 

used. These expansions are defined by coefficients named beam shape coefficients 

(BSCs), which encode the structure of the beam. In spherical coordinates, these 

BSCs are denoted gm
n,T M . and gm

n,T E . in which TM stands for “Transverse Magnetic,” 

TE stands for “Transverse Electric,” n ranges from 1 to infinity, and m from (—n) 

to (+n). 

We may distinguish two different methods, namely, intrinsic and extrinsic 

methods, to evaluate the BSCs, as follows: “ Intrinsic methods evaluate BSCs of a 

GLMT posed in a certain coordinate system in terms of quantities pertaining to the 

same coordinate system. Conversely, extrinsic methods evaluate BSCs of a GLMT
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posed in a certain coordinate system in terms of BSCs in a different coordinate 

system.” 

To illustrate these definitions, let us mention that the GLMT stricto sensu, i.e., 

for a homogeneous sphere, used an intrinsic method. Conversely, the GLMT for 

spheroids used an extrinsic method in which the BSCs in spheroidal coordinates are 

expressed in terms of the BSCs in spherical coordinates, e.g., [15] and references 

therein dating back to 2001 [38, 39] and 2002 [40, 41]. In such a context, Problem 

1 was defined as: “Develop a general theory of coordinate transformations for 

extrinsic evaluations of beam shape coefficients,” i.e., express BSCs in a certain 

coordinate system in terms of BSCs in another coordinate system. 

This problem, in its generality, was certainly too ambitious. However, many uses 

of an extrinsic method have been reviewed in [19–21]. To provide a few examples, 

besides the use of the extrinsic method to deal with the scattering by spheroidal 

particles, such a method has been used as well to deal with the scattering by 

cylinders [42, 43], by spherical particles with a spheroidal inclusion at the center 

[44], to the study of reflection and transmission of beams by a slab [45], and to the 

scattering of a particle above a plane surface [46]. A review on intrinsic and extrinsic 

methods is available from the introduction of [47], together with a discussion of the 

extrinsic method relating spherical and spheroidal coordinates. Also, the evaluation 

of spheroidal BSCs using either intrinsic or extrinsic methods is discussed in [48]. 

2.2 Problem 2 

See section 3 of [36]. As a consequence of the use of extrinsic methods to deal 

with the scattering by spheroidal particles, Problem 2 was defined as: “Develop an 

intrinsic method for evaluating beam shape coefficients in spheroidal coordinates.” 

A first solution to this problem has been provided in [49], in the general case of 

an off-axis formulation. The solution is much more complicated than in the case 

of spherical coordinates for two reasons (i) vector spheroidal wave functions to be 

used are more complicated to handle than vector spherical wave functions and (ii) 

both Transverse Magnetic (TM) and Transverse Electric (TE) coefficients occur 

in spheroidal radial field components in contrast with the fact that, in spherical 

coordinates, only TM-coefficients occur in the expanded description of the radial 

electric field component and TE coefficients occur in the expanded description of 

the magnetic field component (see Chapter 3 in [18]), as a result of the fact that the 

Bromwich method, which can be used to build the GLMT in spherical coordinates, 

cannot be used to build the GLMT in spheroidal coordinates [50]. As a consequence 

of these new difficulties, the solution to the intrinsic BSCs has been found under the 

form of an infinite number of equations and an infinite number of unknowns, which 

might be solved by studying a series of successive approximations. The numerical 

implementation of such an algorithm has not been achieved. 

In view of the difficulties associated above with the off-axis case, a subsequent 

paper restricted the ambition to the study of an intrinsic method for the evaluation
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of spheroidal BSCs in the case of an on-axis standard configuration [51] and has 

been able to provide numerical results for the fifth-order Gaussian Davis beams 

[52], for plane waves taken as a limit of fifth-order Gaussian Davis beams when 

the beam waist radius tends to infinity, and for a Gaussian beam described by 

using a localized approximation (localized approximations will be discussed below), 

with comparisons between spheroidal BSCs obtained using either the intrinsic or 

the extrinsic techniques. The on-axis standard configuration corresponds, in the 

language of the theory of transformations of BSCs through rotations of coordinate 

systems [53], to Euler angles equal to 0, e.g., section 6 in [54]. For an application to 

the case of the scattering of a zeroth-order Bessel beam by spheroid, the reader may 

refer to [55]. 

The case of oblique illumination has afterward been considered in [56]. Numer-

ical results are provided for plane waves and Gaussian beams, with an agreement 

between the extrinsic and intrinsic methods. It would remain to return to the general 

off-axis case such as depicted, e.g., in [49] or possibly by starting from the on-axis 

case and using addition theorems in spheroidal coordinates. 

2.3 Problem 3 

See subsection 4.A of [36]. This problem and others below are related to what 

is called a localized approximation. It happens that several methods can be used 

to evaluate BSCs, namely, quadratures [57, 58], finite series [59–61], localized 

approximations (to be discussed below), and the angular spectrum decomposition 

(ASD), or angular spectrum representation (ASR) [62, 63] with a review in [64], 

see as well references therein. 

Among these methods, the most popular has been the localized approximation 

(with variants) due to its flexibility, its easy implementation, and its computing time 

efficiency. For a review sufficient to the purpose of the present subsection, the reader 

may refer to [65]. We now define the on-axis and off-axis cases by referring to a 

scattering problem in which a spherical scatterer is illuminated by a beam with an 

axis of symmetry. For an on-axis beam, the center of the target particle is located 

on the beam’s symmetry axis, while it is transversely displaced from the symmetry 

axis for an off-axis beam. 

There is a special on-axis case when the center of the beam waist of a Gaussian 

beam is located at the center of the scattering sphere, let us call it the waist-center 

case. Then, the phase fronts are locally plane and we may rely on the van de Hulst 

principle of localization [66], which has been originally used and published in 1986 

to design what has then be called a localized approximation, for a Gaussian beam 

in the waist-center case [67]. Generalizations have been made for more general on-

axis incidence and for off-axis incidence, furthermore justified without having to 

rely any more on the van de Hulst principle of localization [68, 69]. More generally, 

the case of arbitrary-shaped beams has been considered and a general localized
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approximation has been established, including the off-axis case, without having to 

rely on the van de Hulst principle of localization [70]. 

When dealing with BSCs for a general on-axis beam and for an off-axis beam, we 

then have two possibilities (i) use a localized approximation, which has been used 

without using the van de Hulst principle of localization or (ii) use this principle 

to deal with the waist-center case and deduce the BSCs so obtained to derive the 

BSCs in more general situations by using translational addition theorems [71–73]. 

Therefore, strategy (ii) shows that the van de Hulst principle may be used in the 

most general configurations, although it becomes hidden when we depart from the 

waist-center case with strategy (i). Hence Problem 3: “Examine how the localized 

interpretation propagates through the mathematics using translation addition theo-

rems,” or under another formulation: “Track the localized interpretation throughout 

the use of the translational addition theorems, and reveal what is hidden.” This was 

stated as being expectably a difficult problem, and has not been worked out. 

2.4 Problem 4 

See subsection 4.B of [36]. At the time when the list of problems was published, we 

possessed several versions of the localized approximation in spherical coordinates, 

namely (i) an original localized approximation obtained by using the van de 

Hulst principle of localization and justified by empirical tests [74], (ii) a modified 

localized approximation for Gaussian beams deduced from a rigorous justification 

for Gaussian beams [68, 69], and (iii) a second modified localized approximation 

deduced again from a rigorous justification but valid for arbitrary-shaped beams 

(excluding however beams with axicon angles and/or topological charges) [70], each 

new variant proposing an improvement with respect to the previous one. Localized 

BSCs are obtained using a procedure involving a prefactor (i/L1/2), whatever the 

harmonic time dependence used, i.e., either of the form exp(+iωt) or exp(—iωt) 

[75]. The quantity L reads as: 

.L = (n − m) (n + m + 1) (1) 

for the modified localized approximation and: 

.L = (n − |m|) (n + |m| + 1) (2) 

for the second modified localized approximation. Therefore, if n = m or n = |m| 

for the modified localized approximation and for the second modified localized 

approximation, respectively, then the localized BSCs diverge. In [36], remedies 

to this situation were discussed but it was stated that, nevertheless, it was a loose 

end that should be cleaned up. Hence, Problem 4 stated: “Complement the second 

modified localized approximation.” This problem is solved in [76].
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2.5 Problem 5 

See subsection 4.C in [36]. Localized approximations in spherical coordinates 

having been very popular and efficient, it was desirable to possess as well localized 

approximations in spheroidal coordinates, hence Problem 5: “Design an intrinsic 

localized approximation in spheroidal coordinates.” The extrinsic method already 

allowed one to implement a localized approximation in spheroidal coordinates 

because, once the spheroidal BSCs are obtained in terms of the spherical BSCs, it is 

possible to evaluate these spherical BSCs using a localized approximation, so that 

the spheroidal BSCs as well are expressed in terms of a localized approximation. But 

this is an indirect extrinsic procedure. It is expected that a direct intrinsic procedure 

would be more efficient. The design of intrinsic procedures to evaluate spheroidal 

procedures (Problem 2 above) was believed to be a necessary step to the design of 

intrinsic spheroidal localized approximations. Problem 5 is however still an open 

problem even if Problem 2 already received solutions. 

2.6 Problem 6 

See subsection 4.D in [36]. Assume that we possess spherical BSCs gm
n,X . (X = TM 

or TE) by referring, for instance, to the second modified localized approximation. 

The derivation of the justification of this localized approximation in [70] was  

however not valid for arbitrary orientation of the illuminating beam but for a specific 

orientation (non-oblique) called the standard orientation. If we want to obtain 

localized BSCs for oblique orientation, we must then use a two-step procedure in 

which (i) we first design a localized approximation for the standard orientation and 

then (ii) derive the localized BSCs for oblique orientation by applying an operator 

on the localized BSCs for standard orientation, e.g., [53]. In other words, we first 

localize and afterward rotate. Alternatively, we might rotate first and localize after. 

However, these two different procedures do not yield to the same result because 

localization and rotation are transformations that do not commute [77]. Let us 

note that these two procedures—which localize first and rotate, or rotate first and 

localize—are both two-step procedures. Hence Problem 6: “Design a one-step 

procedure for a localized approximation in spherical coordinates for arbitrary-

shaped beams having an arbitrary orientation.” This problem is still open. 

2.7 Problem 7 

See subsection 4.E in [36]. There exists a variant of localized approximation named 

integral localized approximation (ILA), which may be viewed as a hybrid method 

using both a single quadrature and a localization procedure [78]. It is fair to
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state that, among the different variants of localization procedure that have been 

developed, this one is likely the most popular. It exhibits good properties of speed, 

flexibility, and stability. Although it uses a quadrature, it has been observed that, in 

some cases, the ILA may be much less time consuming that nonintegral localized 

approximations. But the ILA has been introduced using the original localization 

procedure, rather than the modified variants, hence Problem 7: “Revisit the integral 

localized approximation to implement modified localized approximations.” 

2.8 Problem 8 

See subsection 4.F of [36]. The rigorous justification of the second modified 

localized approximation relies on what can be called an N-beam procedure [70] 

in which an N-beam is defined by relying on the following expansion of the electric 

field reading as: 

.Ei = E0 exp (−iZ)
7∞

p=0

7∞

q=0

7∞

l=0
Ei

pqlX
pY qZl (3) 

in which X, Y, Z are rescaled Cartesian coordinates. An N-beam is then obtained 

from Eq. 3 by a truncation in which all terms for (p + q + l) > N  are set to 

0. It is then found that the BSCs obtained from the second modified localized 

approximation is exactly equal to rigorous BSCs obtained from quadratures for 

N small enough, hence the justification of the word “approximation” since this 

agreement is no more observed for higher-order N-beams. It was then suggested 

to deal with the Taylor expansions of actual beams to see how the localized BSCs of 

N-beams obtained from these actual beams compare with the rigorous BSCs of these 

N-beams obtained by quadratures, leading to Problem 8 expressed as: “Examine the 

behavior of localized approximations for Maxwellian beams,” with a subproblem to 

possibly have a better understanding of the reason why the first terms of the Taylor 

series are sufficient to design a localized approximation. 

For this problem, it is important to deal with Maxwellian beams, i.e., 

beams whose description exactly satisfies Maxwell’s equations. This excludes, 

for instance, the case of Gaussian beams described by the Davis scheme of 

approximations, which is not Maxwellian [79, 80], Bessel-Gauss beams [81], 

or Laguerre-Gauss beams freely propagating [82–86]. For examples of Maxwellian 

beams, [36] referred to papers by Neves et al. [87, 88], and Moreira et al. [89]. 

Other examples of Maxwellian beams are Bessel beams [90, 91], and subsection 

4.1 in [92], Lommel beams [93], Laguerre-Gauss beams focused by a lens, e.g., 

[61] and references therein, and frozen waves, e.g., [94, 95] and references therein.
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2.9 Problem 9 

See subsection 4.G. in [36]. This subsection deals with top-hat beams, which has 

been used for optical sizing [96–98]. It has been found interesting to examine 

whether the localized approximation technique could correctly reconstruct such 

kinds of beams in the GLMT framework. Using a modified localization procedure, it 

is found that a reasonable reconstruction could be achieved, but for large amplitude 

oscillations at the location of the top-hat sharp cutoffs when the field intensities jump 

from the top-hat level down to 0 [99]. The question is to know whether the use of 

the second modified localized approximation could help to decrease the amplitude 

of these oscillations, hence Problem 9: “Implement the second modified localized 

approximation for modeling top-hat beams.” 

2.10 Problem 10 

See subsection 4.G. and 4.H. in [36]. Problem 9 could be completed if we found a 

way to improve the second modified localization procedure to a third localization 

procedure. It has been observed that, when applied to Gaussian beams, the quality of 

the localization procedures decreases when the focusing of the beam increases. This 

may be understood by considering the plane wave spectrum of the beam, which is a 

second way, besides the use of BSCs, to deal with the description of a laser beam. 

Although inefficient when it has to be used numerically, e.g., pages 52–54 of [18, 

64, 100], it is efficient when it can be handled analytically, e.g., [62] and references 

therein. 

Furthermore, it has the conceptual advantage to easily explain a few important 

features such as the failure of the optical theorem, e.g., [101] or the fact that the 

speed of a laser light is smaller than the speed of light, even in vacuum [102]. 

Another feature, relevant to the present subsection, is that the plane wave spectrum 

is made of plane waves, which are more or less tilted with respect to the direction of 

propagation. Now, the more a beam is focused, the more the quantity of tilted waves 

in the spectrum. It has then been independently demonstrated that, when the tilt of a 

plane wave increases, the efficiency of a localization procedure applied to this plane 

wave decreases [77, 103]. 

Therefore, to solve Problem 10, namely, “Design improved localized approxima-

tions,” the theory of transformations discussed in [77, 103], and references therein, 

might provide an entry, the issue being to examine whether we may build a new 

localized approximation, which would commute with rotation (see Problem 6) and 

improve the quality of the localized treatment of tilted waves.
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2.11 Problems 11 and 12 

See subsection 4.H.1 in [36]. One way to deal with the plane wave spectrum 

approach requires to use a two-step process, (i) make the angular spectrum 

decomposition in terms of plane waves and (ii) carry out a partial wave expansion of 

each plane wave, followed by a summation of plane wave partial wave expansions 

to obtain the partial wave expansion (and the BSCs) of the whole wave. GLMT 

however may be viewed as a one-step process in which the expansion of the whole 

wave is directly obtained thanks to the use of BSCs. Problem 11 was then: “Assess 

the relative convenience or inconvenience of a two-step process for determining 

the BSCs relative to a one-step process.” Since the enunciation of this problem, 

many uses of the ASD to evaluate BSCs have been published, see again [62, 63], 

and references therein, and also many papers that may easily be reached by using 

keywords (such as ASD, or “angular”) in [20, 21]. This makes Problem 11 solved 

(or obsolete). The same is true for Problem 12: “Study computational issues related 

to the plane wave spectrum approach.” 

2.12 Problems 13 and 14 

See subsection 4.H.2 in [36]. Problem 13 was “Implement a localized approximation 

in the EBCM” while Problem 14 “Extend the EBCM to arbitrary-shaped beams 

with the use of beam shape coefficients.” The origin of these problems is that 

EBCM has been mainly used for plane wave illumination, or possibly using an 

ASD in early ages, see a review in [34]. However, the use of EBCM using BSCs 

was lacking. Insofar as both GLMT and EBCM describe the incident fields using 

VSWFs, Problem 14 was expected to be fairly easy. Furthermore, Problem 13 may 

be viewed as a subproblem of Problem 14 in which BSCs used in EBCM would be 

expressed in terms of a localized approximation. 

Indeed, several papers using EBCM to describe the interaction of laser beams 

with particles, in which the expansion over VSWFs were expressed using BSCs, 

have been published since then. What I believe to be a fairly exhaustive list of 

papers dealing with EBCM and BSCs is as follows: (i) Mackowski and Mischenko 

dealt with discrete random media illuminated by on-axis Gaussian beams with BSCs 

evaluated using a localized approximation [104], (ii) Chen et al. dealt with uniaxial 

anisotropic objects illuminated by on-axis Gaussian beams [105], (iii) Wang et al. 

dealt with optically anisotropic particles illuminated by a Gaussian beam [106], 

(iv) and (v) Zheng et al. dealt with arbitrary chiral objects illuminated by on-

axis Gaussian beams, viewing the method used as a combination of EBCM and 

GLMT, or with objects with a chiral inclusion [107, 108], to be complemented by 

subsections 9.4 in [19], 8.1 in [20], and 11.1 in [21].
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2.13 Problems 15 and 16 

See subsection 4.H.3 in [36]. Descriptions of electromagnetic beams may be 

Maxwellian or non-Maxwellian, i.e., they exactly satisfy or not Maxwell’s equa-

tions, see Problem 8 above. In both cases, we may evaluate BSCs. The fields 

obtained with the aid of these BSCs generate a beam that exactly satisfies Maxwell’s 

equations. For a Maxwellian beam, the beam reconstructed using the BSCs identi-

fies with the original beam. Conversely, for a non-Maxwellian beam, we obtain a 

conversion from the non-Maxwellian beam to a Maxwellian beam. This process 

is named a beam remodeling, hence Problem 15: “Examine the angular process 

of the angular spectrum representation” and Problem 16: “Examine the angular 

process of the angular spectrum representation for the particular case of a Gaussian 

beam.” We have several examples of discussions of beam remodeling using the other 

methods (quadratures, finite series, localized approximations), e.g., [81, 85] and 

more specifically [68, 69], for Gaussian beams. Problems 15 and 16 would actually 

ask for the examination of similar examples when using the angular spectrum 

representation. In view of the extensive literature published since then related to the 

use of ASD in GLMT, and comparisons with different approaches, e.g., references 

in Problems 11 and 12, we may consider that Problems 15 and 16 are obsolete. 

2.14 Problem 17 

See subsection 4.H.3 in [36]. Let us consider a beam propagating in the z-direction 

and its formulation with respect to x and y in the focal plane z = 0, and assume 

that we have an expression for the fields in this focal plane. We may then determine 

spectral components from these fields using a Fourier transform. Thereafter, because 

the fields satisfy Helmholtz equation, we can determine the fields in whole space, 

see Goodman [109] and a detailed discussion page 3 of [102], from Eq. (8) to Eq. 

(10). We may therefore safely focus on the description of the beam in the focal 

plane. This description may be non-Maxwellian or Maxwellian, hence Problem 

17: “Discuss profiles of non-Maxwellian beams in the focal plane, and draw 

consequences”. An entry for this problem might be to examine the descriptions of 

various beams, either non-Maxwellian or Maxwellian, in the focal plane, to possibly 

generate a first intuition “to the solution likely relevant to the remodelling issue of 

non-Maxwellian beams”. 

2.15 Problem 18 

See subsection 4.H.4 in [36]. To describe a beam in terms of an ASD, we may start 

from the specification of the electric and magnetic fields in the z = 0 plane, see
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Problem 17. It is however furthermore necessary to include all boundary conditions 

the beam is subject to. This was defined as Problem 18: “Study the boundary 

conditions for the applicability of the angular spectrum method.” Due to problems 

currently investigated concerning the ASD, and soon available in the literature, this 

problem may be viewed as obsolete. 

2.16 Problem 19 

The expressions to evaluate BSCs using double quadratures [57] contain a r-

dependent prefactor, e.g., Eqs. (3.13) and (3.20) in [18]. For instance, the expression 

for the TM -coefficients reads as: 

.gm
n,T M = f (n,m)

r

jn(kr)

l π

0

l 2π

0

ErP
ImI
n (cos θ) exp (−imϕ) sin θdθdϕ (4) 

in which f (n,m) is a function which is irrelevant in the context of the present 

paper, (r, θ , ϕ) are spherical coordinates, jn(kr) in which k is a wavenumber denotes 

spherical Bessel functions of the first kind, P ImI
n . are associated Legendre functions, 

and Er is the radial component of the electric field. Since BSCs are complex 

numbers, the double quadrature must be proportional to jn(kr)/r in order to eliminate 

the r-dependent prefactor. This is demonstrated in particular by Neves et al. in 

two papers already quoted [87–88]. However, the demonstration in these papers 

assume that all plane waves used in the proof are oscillatory, without containing any 

evanescent wave. 

But tightly focused beams may contain evanescent components. It is then 

interesting to examine how the contributions of these evanescent waves allow one 

to cancel the prefactors occurring in the quadrature expressions of the BSCs. This 

defines Problem 19: “Examine the prefactor cancellation process for evanescent 

components of the angular spectrum method,” which could be better reworded 

with a more general formulation as: “Examine the prefactor cancellation process 

for evanescent components.” 

2.17 Problem 20 

See subsection 4.I. in [36]. This problem was written as: “Review the literature 

devoted to the scattering of tightly focused beams” with a literature background 

provided in the relevant subsection 4.I. The idea was that such a review might serve 

as a springboard for further developments. Retrospectively, I am not sure any more 

whether such a review would be useful and I would therefore consider Problem 20 

as being obsolete.
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2.18 Problem 21 

See subsection 4.I. in [36]. The case of tightly focused beams has nevertheless the 

interest that the quality of the localization procedures decreases when the beam 

is more focused, as already discussed in Problem 10. It is then of interest to 

examine how the various variants of localized approximations behave for tightly 

focused beams, particularly when we approach the theoretical limit where the 

transverse beam dimension is comparable to the wavelength. As an example Fig. 

2 of [69] displayed electric field profiles of off-axis localized Gaussian beams for 

a wavelength of 0.6328 µm and a beam waist of 1 µm, for various off-axis x-

locations, exhibiting in particular ghost bumps, which are the consequence of the 

modified localization procedure used to build these profiles, hence Problem 21 

reading as: “Examine the behavior of the original and the second modified localized 

approximations for tightly focused beams, and compare with similar results already 

obtained for the modified localized approximation.” 

2.19 Problem 22 

See subsection 4.I. in [36]. The actual beam in the laboratory may depart from the 

ideal intended beam, as exemplified in [110, 111]. As a consequence, disagreements 

between theoretical and experimental results might be interpreted in an erroneous 

way. Therefore, the possibility of measuring BSCs of actual beams in the laboratory 

would be welcome. This issue has been considered theoretically in [112–114] 

and successfully tested experimentally [114]. These studies have however been 

restricted to the case of on-axis illuminations, hence Problem 22: “Theoretically 

and experimentally investigate techniques of measurements in the laboratory of the 

beam shape coefficients of off-axis beams.” 

2.20 Problem 23 

See section 5 in [36]. After Askin’s work, it has been very common to consider 

optical forces as the summation of two kinds of forces, namely, gradient forces and 

scattering forces, see review in [48]. In 2013, a few papers were already published 

using GLMT to calculate optical forces (and also torques), namely, [115–121], and 

to use them for levitation experiments [122–124]. However, there was only one 

paper dealing with the decomposition of optical forces in terms of gradient and 

scattering forces in the GLMT framework [125], nevertheless restricted to Gaussian 

beams in the weak diffraction limit. Hence Problem 23: “Derive various physically 

motivated contributions to radiation forces and torques for arbitrary-shaped beams 

as limiting cases of GLMTs.”
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Although this problem has not yet been considered in the case of torques, 

a thorough analysis of the decomposition of optical forces exerted on spherical 

particles in a GLMT framework has been considered in the recent years, starting 

with Rayleigh particles (more generally dipolar particles) [126–136], continuing 

with small magnetodielectric particles [137, 138], with quadrupoles [139, 140], 

ending with arbitrary-shaped particles [141], with a review in [142]. One of the 

many results from this series is that gradient and scattering forces have to be 

completed by nonstandard forces, which have not been detected by Ashkin due to 

the fact that GLMT was not yet available at this time. Therefore, as far as optical 

forces are concerned, Problem 23 is completed. 

2.21 Problem 24 

See section 5 in [36]. After [125] dealing with Rayleigh particles, it has been 

erroneously stated that “it would not be fruitful to attempt to derive Rayleigh 

scattering from a GLMT.” This statement was erroneous because [125] examined 

a weak confinement limit. Actually, if there is no restriction on the amount of 

focusing, i.e., without considering the weak confinement limit, papers devoted 

to Rayleigh scattering in the previous subsection demonstrated the existence of 

nonstandard forces. Problem 24 has then been listed as a consequence of the 

erroneous statement as: “Derive Rayleigh-Gans theory, or other similar theories, 

for arbitrary-shaped beams as limiting cases of GLMTs.” Although motivated by an 

erroneous statement, Problem 24 is still valid. It has not been worked out. 

2.22 Problem 25 

See subsection 6.A. in [36]. We may consider ray optics approximations of wave 

optics and focus on the internal fields inside a particle (forgetting fields leaking 

outside of the particle), producing what is called a billiard. The simplest case is 

a billiard corresponding to a spherical particle, leading to what is called a circular 

billiard. Such a simple billiard only produces periodic and quasiperiodic trajectories. 

More complicated behaviors, namely, chaotic trajectories, may be produced if we 

consider more complicated enclosures, such as in the case of asymmetric resonant 

cavities [143–147]. 

Such behaviors and prospects were published in 2000 in a review paper [148]. 

At this time, known microcavities leading to chaotic behavior (asymmetric resonant 

cavities as above, stadium, ovals), e.g., [149] for an example relying on an analogy 

between light and quantum mechanical scattering, were not compatible with the use 

of separable coordinate systems for the associated electromagnetic problem and, 

therefore, could not be investigated in the framework of any GLMT.
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This led to the question to know whether we could find a microcavity which 

would generate chaotic behaviors, that is to say that would not be integrable in 

the mechanical sense, and nevertheless could receive an analytical treatment in the 

framework of a GLMT. The answer is positive by considering a circular disk with 

one eccentrically located circular inclusion, then generating an annular billiard. 

From the point of view of GLMT, the corresponding problem is the one of a 

spherical particle containing a spherical inclusion which, indeed, has been solved 

including with numerical computations [13, 14, 150, 151]. The point of view of 

the associated billiard generating Hamiltonian chaos has been examined in [152– 

154]. However, there has not yet been any effort done to connect these two lines 

of research, i.e., to search in the electromagnetic distribution of energy inside the 

particle any fingerprint reminiscent of the Hamiltonian behavior, which, expectably, 

should play some kind of ray skeleton for the complete field structures. This is 

Problem 25: “Search for optical chaos in the electromagnetic problem associated 

with the annular billiard, and in other similar electromagnetic problems.” 

2.23 Problem 26 

See subsection 6.B. in [36]. Instead of dealing with billiards with trajectories 

confined inside an enclosure, we may consider Hamiltonian trajectories that come 

from infinity enter an interaction region, and eventually leave back to infinity. It 

happens that, in some cases, outgoing trajectories may have very complicated, say 

chaotic behaviors, depending on the incoming trajectory parameters. Technically, 

we arrive to the definition of irregular (chaotic) scattering reading as: “A scattering 

system is chaotic if the deflection function or any other convenient property of 

the final asymptote [outgoing trajectory] is discontinuous on a fractal subset of its 

domain, which is the set of all incoming asymptotes [in-coming trajectories]” [155]. 

Examples of configurations leading to such chaotic behaviors are N-hill potentials 

where at least three hills are present [156], which is to be contrasted with the 

case where wells rather than hills are considered, with the fact that two wells are 

sufficient to generate chaotic scattering [157]. Furthermore, smooth potentials may 

be deformed to hard-edge potentials, so that associated electromagnetic problems 

could be associated with the case of assemblies of spheres and aggregates [12, 158]. 

In particular, the simplest case to be considered would be the one of a three-hard disc 

scattering problem, corresponding to the electromagnetic problem of the scattering 

by an assembly of three spheres, as described in [148]. The case of three parallel 

cylinders under perpendicular illumination would be suitable as well. Similarly, as 

for the case of Hamiltonian chaos in Problem 25, the case of irregular scattering 

could be worked out, leading to Problem 26: “Examine irregular (chaotic)scattering 

in electromagnetic situations.”
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2.24 Problem 27 

See section 7 in [36]. GLMT may be used in the case of pulsed illumination, as 

discussed in [159–167], see as well [168–172]. Relying on this literature prior to 

[36], it was obvious that pulsed lasers offered new possibilities for new experiments 

and applications, including in the field of optical particle characterization, all these 

opportunities being gathered under the name of pulsometry, hence Problem 27 

reading as: “Theoretical and experimental developments in pulsometry.” 

An example was by Bakic et al. [169] dealing with time-integrated detection of 

femtosecond laser pulses scattered by small droplets, demonstrating that rainbow 

refractometry is feasible under ultrashort pulse illumination. Since then, many 

aspects of Problem 27 have been published in the literature, which can be retrieved 

from section 5 in [19], subsection 3.6 in [20], and subsection 4.8 in [21]. It is 

therefore possible to state that Problem 27 is basically solved, in the course of an 

indefinite development. 

2.25 Problem 28 

See section 7 in [36]. When dealing with the interaction of laser pulses and particles, 

it has been observed that, inside the particle, the light could be focused to light hot 

spots traveling faster than light. If the material of the particle is modified by the 

intensity of the hot spots, it has been suggested that this could lead to the occurrence 

of quasi-particles traveling faster than the speed of light, and therefore generating 

Cerenkov radiation, which could possibly be observed outside of the particle [173], 

hence Problem 28: “Pursue theoretical investigations, to be complemented by 

experiments, concerning the possibility of Cerenkov radiation generation in the case 

of ultrashort laser pulse scattering.” This problem may be viewed as a subproblem 

of Problem 27. 

2.26 Problem 29 

See section 7 in [36]. Another subproblem of Problem 27 has been motivated by 

a numerical simulation for two-photon absorption and fluorescence in a spherical 

microcavity under illumination by two laser pulses [174]. This last paper exemplifies 

the fact that, although GLMTs describe elastic scattering, they allow to evaluate 

fields inside the scatterer which, rather being passive, can be viewed as excitation 

fields for other phenomena, in particular nonelastic phenomena, hence Problem 29: 

“Develop applications of GLMTs outside of the range of elastic linear phenomena.”
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2.27 Problem 30 

See subsection 8.A. in [36]. Assume for instance that you deal with a case when 

two Gaussian beams interfere as in laser-Doppler velocimeters or phase-Doppler 

instruments. You may use GLMT to predict the behavior of such an instrument, to 

design it, and to interpret data. One way to deal with this problem using GLMT—the 

obvious one—is to evaluate the BSCs of each incoming beam, then the behavior of 

each beam in the instrument, and to superpose these behaviors to obtain the response 

of the instrument. This approach, by the way, has been the first genuine application 

of GLMT, particularly concerning phase-Doppler instruments for a fairly long-term 

adventure, e.g., from 1992 to 2003 [175–187]. 

Another approach would be to directly evaluate the BSCs of the two illuminating 

beams taken as a single beam, i.e., we may use a one-step approach (superposition 

of beams viewed as a single beam in its own right) or a two-step approach 

(considering separately each incoming beam before superposing the responses from 

each individual beam). 

In Problem 30, each incoming beam possessed the same frequency. Actually, a 

more general problem has been solved in which each illuminating beam possesses 

its own frequency, independently from the other beams, leading to a polychromatic 

GLMT, in which BSCs are replaced by field shape spectra (FSSs) [188, 189]. 

Problem 30 could then be viewed as a special case of the polychromatic GLMT, 

although a direct approach using only BSCs could be more illuminating concerning 

the physics of the problem. 

2.28 Problem 31 

See subsection 8.B. in [36]. Subsection 8.B. provides a history of the development of 

GLMTs, from the case of spherical particles, which required about 15 years before 

being able to deal with genuine applications, specifically in the field of optical 

particle characterization as discussed in Problem 30, then 5 years for the case of 

circular cylindrical particles, from a formal paper in 1994 [190] to the publication 

of numerical results in 1997 and 1999 [8, 9], and only about 3 years for the case of 

elliptical cylindrical cylinders, e.g., [10, 191–193], with a review in [11]. This short 

discussion provides a testimony of an acceleration of the production of GLMTs for 

various kinds of particle shapes (and morphologies), hence Problem 31: “Produce 

and study other GLMTs.” 

This problem has been completed much more efficiently than it was expected. 

Besides the case of multilayered spheres [6, 7], assemblies of spheres and aggre-

gates [12], spheres with an eccentrically located spherical inclusion [13, 14], and 

spheroids [15–17], already quoted above, let us mention a few other cases dealing 

with BSCs: cylinders with coating [42], particles with uniaxial and chiral material 

[194], particles with negative (metamaterial) refractive index [195], spheroids with
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inclusions [196], spherical particles with a spheroidal inclusion at the center [44], 

spheroids with coatings [197], assemblies of cylindrical particles [198], charged 

particles [199], layers and slabs [200], particles above a surface [46], cylinders 

with inclusions [201], particles made from a PEMC material, i.e., man-made 

metamaterial acting as a perfect reflector of electromagnetic waves [202], with many 

other examples and discussions in [19–21]. 

2.29 Problems 32 and 33 

See subsection 8.B. in [36]. Problem 32 may be viewed as a subproblem of Problem 

31 concerning light scattering by a slab, asking whether this problem could not 

be solved by taking the case of a large sphere in the limit of infinite radius, 

assuming that a sphere with infinite radius might behave as a slab, hence Problem 

32: “Compare scattering by a very large sphere to scattering by a slab.” 

Another subcase of Problem 31 is Problem 33 reading as: “Compare scattering 

by a particle near a surface with scattering by a bisphere for which one of the spheres 

is much larger than the other.” 

Problems 32 and 33 have many variants such as using scattering cylinders instead 

of scattering spheres in Problem 32 and using a scattering bicylinder instead of a 

scattering bisphere in Problem 33. 

2.30 Problem 34 

See subsection 8.C. in [36]. Numerical computations for the GLMT for elliptical 

cylinders illuminated by arbitrary beams have been published in a PhD thesis by 

Méès [192], but they have not been published in the archival literature because 

they do not perfectly agree with results published by Yeh in the case of plane 

wave illumination [203]. It has been conjectured that Yeh’s results might be slightly 

inaccurate due to the fact that these results, obtained more than three decades ago, 

might have not benefitted the more recent advances concerning the computation of 

the involved Mathieu functions, hence Problem 34 was required before publishing 

Méès’ results, namely: “Confirm previously obtained computations concerning the 

GLMT for elliptical cylinders.” 

2.31 Problem 35 

See subsection 8.D. in [36]. This problem deals with the case of scattering by 

assemblies of spheres and aggregates already discussed above in the framework 

of a GLMT in which the assembly is considered as a single particle, instead of
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considering this situation as a situation of multiple or even dependent scattering, 

particularly when they are touching [204]. Let us assume that we have a large 

number of particles whose positions are only statistically known. One approach used 

is to deal with a mean-field approximation to electromagnetic scattering in which 

the statistical positions of the scatterers are used to generate a statistical distribution 

of BSCs [205]. This seems to be an appealing approach for the case of arbitrary-

shaped beam illumination, hence Problem 35: “Develop a mean-field approach for 

electromagnetic multiple scattering by a statistical assembly of spheres for arbitrary-

shaped beam illumination” implying, obviously, specific applications for specific 

beams. 

3 New Problems 

It is the fate of scientific research to have problems left behind while, for some 

reasons, new problems appeared on the stage. It may even happen that solving one 

problem reveals the opportunity for several other unexpected problems. I therefore 

intend to complement the discussion of old problems with some new problems 

consecutively numbered. 

3.1 Problem 36 

This problem should have been actually already proposed in [36]. It deals with 

the contents of a paper by Lock [206], more precisely with its Appendix, which 

proposes a “derivation of the localized approximation for an on-axis Gaussian 

beam.” This was actually the first rigorous formal derivation of the localized 

approximation (restricted to Gaussian beams). It relies on a mathematical method 

known as the stationary phase method allowing one to deal approximately but 

precisely with quadratures when integrands possess what is called a stationary 

point. However, the method, successful when dealing with on-axis beams, failed 

in the case of off-axis situations, hence Problem 36: “Understand the failure of the 

stationary phase method to the demonstration of a rigorous approach to validate 

the localized approximation in the case of Gaussian beams, under an off-axis 

configuration and, if possible, correct the approach to make it feasible.” 

3.2 Problem 37 

Problem 37 is similar to Problem 29 devoted to nonlinear effects. Internal fields, 

instead of being excitation fields for nonlinear phenomena, could be excitation



On a List of Problems for Research in Generalized Lorenz-Mie Theories, More. . . 241

fields for quantum phenomena, hence Problem 37: “Examine quantum phenomena 

produced by fields inside scattering particles in the framework of GLMT or EBCM.” 

3.3 Problem 38 

Problem 38 is more a research program than a problem, strictly speaking. It relies on 

the fact that, under certain conditions, acoustical fields may be expressed in terms 

of an expansion over basic functions, similar to the one used in GLMT and EBCM, 

allowing one to define acoustical BSCs gm
n,A ., in which the subscript A stands for 

“acoustical,” similar to the electromagnetic BSCs. However, since acoustical fields 

are scalar fields instead of vectorial fields, we have to deal with a single set of 

acoustical BSCs gm
n,A . instead of two sets of electromagnetic BSCs gm

n,T M . and gm
n,T E .. 

In particular, the quadrature expression to evaluate acoustical BSCs is similar to Eq. 

4 used to express electromagnetic BSCs. 

Problem 38 may then be defined as: “Transfer the results obtained in GLMT (and 

EBCM) to the case of acoustical fields.” Results already obtained for this “problem” 

have been published in [207–209]. 

3.4 Problem 39 

Returning to electromagnetic issues, structured beams may propagate an infinite 

amount of energy, like Bessel beams, or a finite amount of energy like Gaussian 

beams or Bessel-Gauss beams. All these kinds of beams may be encoded using 

BSCs, hence Problem 39: “How can we, from the expressions for BSCs, determine 

whether the beam propagates a finite or an infinite amount of energy.” 

3.5 Problem 40 

As a consequence of Problem 23, the existence of a new kind of optical forces, 

named “non-standard forces,” has been established. As a consequence of the listed 

solutions to Problem 23, it has been demonstrated that these nonstandard forces may 

be isolated, at least in the case of Rayleigh scattering, from spin-curl forces, which 

have a physical meaning. These spin-curl forces may actually be separated into two 

parts, namely, (i) scattering forces and (ii) nonstandard forces. But nonstandard 

forces alone do not yet receive any direct physical meaning, hence Problem 40: 

“Establish the physical meaning of non-standard forces.”
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3.6 Problem 41 

Electromagnetic scattering is usually studied in the case when the medium external 

to the particle is lossless. Problem 41 may then be defined as: “Study light scattering 

issues when the medium external to the particle is not lossless.” This problem 

is proposed with the intuitive idea that it could be approached by considering a 

two-layer particle with the external layer being absorbing, with a radius tending to 

infinity. 

4 Conclusion 

About 10 years ago, a list of problems related to GLMTs has been published. As we 

may see from Sect. 2, some of these problems have been solved or became obsolete. 

A new set of problems has been defined in Sect. 3. Problem 41 relies on an intuitive 

feeling and might be possibly poorly defined. I possess a complementary set of 

problems, which is not discussed here because they might still be more intuitive 

and more badly defined. This statement has an obvious interest concerning the 

psychology of researchers, with the likely correct idea that we all begin to deal 

with a problem with intuitive, poorly defined images, which shall be progressively 

refined up to a final satisfactory solution. Another moral to the story is that 

the front of research between what is known and what is unknown possesses a 

somewhat corrugated frontier due to the fact that well-posed problems have not been 

considered and left behind while new problems, often unexpected, appeared on the 

stage. Finally, I hope that the problems proposed in the present chapter might be a 

motivation for other researchers. Problems should not remain as a hidden treasure 

for oneself but must better be shared to the interest of the scientific community, 

particularly when we know that, due to the limited amount of time available, one 

would not be able to solve all the problems we might have in mind. Research is then 

a mixture of satisfaction when a problem is solved and of frustration facing all the 

problems that are not yet solved. 
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Sum Rules and Physical Bounds for a 

Particulate Slab 

Gerhard Kristensson 

1 Introduction 

In recent years, many useful sum rules and physical bounds have been devel-

oped for electromagnetic applications. Examples of these applications are radar 

absorbers [22], periodic structures (frequency selective surfaces) [7, 18], passive 

scatterers [24], antennas [6], metamaterials [5], and high-impedance surfaces [2, 4]. 

The underlying mathematical theory behind the sum rules is covered by many 

authors [1, 19]. These references also contain additional, relevant literature on the 

topic. 

In general, the scattered field by a collection of randomly distributed particles 

consists of a coherent (ensemble averaged) part and an incoherent part. The coherent 

field is of paramount importance in many radar applications, and here we develop 

some new bandwidth results based on the average transmitted field by a particulate 

slab. Specifically, we cover some important consequences of causality and the 

passivity of the (lossless or lossy) particles, which constitute the cornerstones of 

the sum rule based on transmission. These sum roles contain both low- and high-

frequency expansions of the transmission coefficient. As a bonus and an effect of 

the sum rule results, we also get a possibility to check the accuracy in the numerical 

implementation of the theory. 

In this chapter, we develop two sum rules and corresponding physical bounds 

for the coherent transmitted electromagnetic field by a particulate slab. One main 

question of this chapter is to find a limit or to predict the bandwidth of the coherent 

transmitted field for a given transmission level and thickness of the slab. To answer 

this question, we use the obtained physical bounds. 
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The underlying theory and the numerical implementation of the coherent 

reflected and transmitted fields by a random collection of particles in a slab 

geometry are very well investigated in a series of papers [8, 9, 11, 13, 15, 16]. 

The calculation of the transmission coefficient by a slab is reviewed in Sect. 2, 

and in Sect. 3, the analytic properties of the transmission coefficient are analyzed. 

This section also contains two sum rules and physical bounds of the transmission 

coefficient of the coherent field. A few numerical examples are presented in Sect. 4, 

and the results are summarized in Sect. 5. A series of appendices concludes the 

chapter. 

2 Coherent Transmitted Field by a Particulate Slab in the 

Frequency-Domain 

The geometry of the problem is depicted in Fig. 1, and for the application in this 

chapter, we specialize to an incident plane wave at normal incidence polarized in 

the x-direction, i.e., 

. Ei(z) = E0x̂eikz

The background medium is characterized by a real permittivity . e and permeability 

. μ. The background wavenumber is denoted k. This is the description of the incident 

field in the frequency domain with angular frequency .ω = kc (background wave 

velocity c) and suppressed time convention .exp(−iωt). 

For simplicity and to fix ideas, we assume that all particles are identical and 

spherical. The material of particles is assumed consist of homogeneous dielectric 

material. Generalizations to non-spherical particles and optically active materials 

are possible. The common radius of the particles is denoted a. 

The material is confined to the slab .z ∈ [z1−a, z2+a], and we adopt the notation 

.d = z2 − z1 and .D = d + 2a. Note the difference between the slab containing the 

local origins, .[z1, z2] (thickness d), and the material confinement, .[z1 − a, z2 + a] 

(thickness D), see Fig. 1. 

The expressions of the total coherent (average) fields on both sides of the slab for 

an incident plane wave are [11] 

. (Er(z)) = r(k)E0x̂e−ikz, z < z1 −a, (Et(z)) = t (k)E0x̂eikz, z > z2 +a

where .r(k) and .t (k) are the reflection and transmission coefficients of the slab, 

respectively. 

The transmission coefficient .t (k) of the slab is [11]1 

1 The reflection coefficient .r(k) is computed in a similar manner [11], but we do not give the details 

here, since focus is on the transmitted field.
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Fig. 1 The geometry of the 

material region 

.z ∈ [z1 − a, z2 + a]. In three  

dimensions, the spheres do 

not intersect. However, in this 

two-dimensional graph, some 

of the projections of the 

spheres overlap. The yellow 

region denotes the region of 

possible locations of local 

origins, i.e., the interval 

. [z1, z2]

.t (k) = 1 + 2πn0

k3E0

2
7

τ=1

∞
7

l=1

i−l+τ−1

l

2l + 1

8π
yτ l(k) (1) 

where the coefficients .yτ l(k) are 

.yτ l(k) = k

l z2

z1

e−ikz'
fτ l(z

') dz' (2) 

The number density of the particles, i.e., the number of particles per unit volume, 

is denoted . n0. The volume fraction of the particles . ϕ and the number density . n0 are 

related by [15] 

.ϕ = n0
4πa3

3

l

1 − 2a

D

l

= n0
4πa3

3

d

D
(3) 

Under the assumption of the Quasi Crystalline Approximation (QCA) [17], the 

coefficients .fτ l(z) satisfy the following system of integral equations [11]: 

.

fτ l(z) = tτ l i
l−τ+1

l

2π(2l + 1)E0eikz

+ n0

k2
tτ l

2
7

τ '=1

∞
7

l'=1

l z2

z1

Kτ lτ 'l'(z − z')fτ 'l'(z
') dz', z ∈ [z1, z2]

(4)
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where the transition matrix of the spherical particles is denoted . tτ l , and the kernel 

.Kτ lτ 'l'(z) has the form [11] 

.Kτ lτ 'l'(z) =
l+l'
7

λ=|l−l'|+|τ−τ '|
Aτ lτ 'l'λIλ(−kz, 2ka) (5) 

where the real numbers .Aτ lτ 'l'λ are calculated in [11], and the values are explicitly 

given in Appendix 5. The integrals .Il(kz, η) are (.ζ = kz, η = 2ka) 

. Il(ζ, η) =
l ∞

b(ζ )

g(

l

x2 + ζ 2)h
(1)
l (

l

x2 + ζ 2)Pl(ζ/

l

x2 + ζ 2)x dx, ζ ∈ R

where .h
(1)
l (z) and .Pl(x) denote the spherical Hankel functions of the first kind and 

Legendre polynomials, respectively, and where 

. b(ζ ) =
l

l

η2 − ζ 2, |ζ | ≤ η

0, |ζ | > η

and .g(kr) is the pair correlation function. These integrals have a closed-form 

solution for the hole correction (HC), i.e., when .g(kr) = H(kr − η), see [12]. 

The Heaviside step function is denoted . H. The hole correction prevents the particles 

to overlap or intersect, and it assumes that the distribution of any two particles is 

independent, which is an approximation of the actual distribution of the particles. 

The exact expression of the integral .Il(ζ, η) is reviewed in gray box as follows. 

Some effective ways to compute the integrals .Il(ζ, η), .ζ ∈ R, .η ∈ R, . l =
0, 1, 2, . . ., for the hole correction (HC), are presented in [12]. The definition 

of the integral is: 

. Il(ζ, η) =
l ∞

0

H(

l

x2 + ζ 2 − η)h
(1)
l (

l

x2 + ζ 2)Pl(ζ/

l

x2 + ζ 2)x dx

The result is 

. Il(ζ, η) = ile−iζ , ζ ≤ −η, Il(ζ, η) = i−leiζ , ζ ≥ η

and 

. Il(ζ, η) = −ηh
(1)
l+1(η)Pl(ζ/η)

(continued)
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+ 

[l/2]
7

k=0 

(−1)k (2l − 4k + 1)h
(1) 
l−2k(η)Pl−2k(ζ/η), ζ ∈ (−η, η) 

which is a finite sum of spherical waves. 

A useful property of the .Il(ζ, η) function is the parity property: 

.Il(−ζ, η) = (−1)lIl(ζ, η). 

The procedure outlined earlier solves the transmission problem for the coherent 

(average) field exactly and includes all interaction effects between the particles. For 

a given configuration (geometry, material parameters, and number density) compute 

the solution .fτ l(z) to the system of integral equations in (4). Proceed by computing 

the coefficient .yτ l(k) in (2), and, finally, sum the terms in (1) to get the transmission 

coefficient .t (k). This procedure solves the coherent (average) transmitted field of 

the slab. 

2.1 Low-Frequency Behavior 

The low frequency expression of the transmission coefficient for spherical particles 

of radius a as a function of the complex wavenumber .κ = k + iς, k ∈ R, ς ≥ 0 is, 

see Appendix 5 

.t (κ) = 1 + iκH + O(κ2), κ → 0 (6) 

where the constant H is 

.H = −9iϕD

l

t11

4(κa)3 + 6iϕt11
D
d

+ t21

4(κa)3 + 6iϕt21
D
d

l

+ HCorr (7) 

The real-valued coefficient .HCorr is a small correction term due to boundary 

effects,2 see (14) in Appendix 5. In most situations, the correction term has no 

practical importance, but becomes important when high precision is required, 

see Sect. 4.2.1. Note that (6) is the low-frequency expression of the transmission 

coefficient under the assumption of the hole correction (HC) pair correlation 

function. The Percus–Yevick approximation leads to more complex expressions, 

but solvable, and these results are reported in a future publication. Note also that the

2 In the numerical illustrations in Sect. 4, the contribution is approximately .0.3%. 
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low-frequency limit in (6) is not the identical to the homogenization limit, which 

also requires .a/D → 0. 

2.1.1 Non-magnetic Dielectric Sphere 

If the spherical particles are non-magnetic, .μ = 1, and homogeneous with a 

permittivity . e1, then .t11 = 0 (to leading order in . κa) and to leading order in powers 

of . κa

. t21 = 2i(κa)3

3
y + O

l

(κa)5
l

where 

. y = e1 − e

e1 + 2e

The constant y can also be written in terms of the polarizability . γe of the particle [14, 

Sec. 7.9], i.e., 

. γe = 4πa3y

To leading order in powers of . κa, the transmission coefficients .t (κ) for spherical, 

non-magnetic, homogeneous particles with HC is, see (7) 

.H = 3ϕD

2

y

1 − ϕy D
d

+ HCorr (8) 

where the small correction terms .HCorr is 

. HCorr = 24ϕyDa

d

l

l 1

0

dt

4 − ϕy D
d

l

2 + 3t − t3
l − 1

4 − 4ϕy D
d

l

Numerical calculations show that the difference between H in (8), obtained with 

the hole correction, and the Percus–Yevick approximation is small, see also [15].3 

Note that these low-frequency expressions are not the same as the homogenization 

expressions, which corresponds to letting .a/d → 0 (or .D/d → 1). In the low 

frequency limit .κ → 0, the structure of the slab remains, i.e., .a/d = constant, 

and the medium is not homogeneous. In the homogenization limit, .HCorr → 0 and 

.D/d → 1.

3 The low frequency result with the Percus–Yevick approximation is also tractable, and this result 

is published in a future publication. 
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3 Analytic Properties of the Transmission Coefficient in the 

Time-Domain 

In this section, the analytic properties of the transmission coefficient .t (k) of a slab, 

filled with passive particles, are investigated. Some relevant literature on the topic is 

found in [1, 4, 5, 7, 18, 19]. 

3.1 Causality 

In a time-domain setting, a general incident wave of fixed polarization . ̂x impinges 

normally on a slab .z ∈ [z1 − a, z2 + a]. The background wave velocity is c, and the 

wavenumber is denoted .k = ω/c. We have  

. Ei(z, t) = x̂

l ∞

−∞
A(k)eikc((z−z1+a)/c−t) dk, z < z1 − a

This is the description of the incident field in the time domain. 

We assume the incident field .Ei(z1 − a, t) = 0, .t < 0 and that .A(k) ∈ L2(R). 

This implies by Titchmarsh’s theorem [1, 20] that .A(k) has an analytic continuation 

in the upper complex plane .C+ = {z ∈ C : Im z > 0}. The amplitude .A(k) is not 

only in .L2(R) for an argument on the real axis. It is also in .L2(R) on every line in 

the upper half plane parallel to the real axis. The reflected and transmitted fields are 

. 

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Er(z, t) = x̂

l ∞

−∞
r(k)A(k)e−ikc((z−z1+a)/c+t) dk, z < z1 − a

Et(z, t) = x̂

l ∞

−∞
t (k)A(k)eikc((z−z1+a)/c−t) dk, z > z2 + a

The fields .Ei(z, t), .Er(z, t), and .Et(z, t) are real quantities, which imply 

. A(k) = A∗(−k), r(k) = r∗(−k), t (k) = t∗(−k), k ∈ R

We assume the wave front velocity in the slab does not exceed the background 

velocity c. This assumption excludes the case with particles having an internal wave 

speed higher than the background wave speed. Assuming causality of the reflected 

and the transmitted fields, i.e., .Er(z1−a, t) = 0, .t < 0 and .Et(z2+a, t+D/c) = 0, 

.t < 0, where .D = z2 − z1 + 2a. This implies that .r(k) and .t (k) have analytic 

continuations in .C+ [20]. 

On the real axis, energy conservation, .|r(k)|2 + |t (k)|2 ≤ 1, implies, . |r(k)| ≤ 1

and .|t (k)| ≤ 1. Since our goal in this chapter is to find sum rules for the transmitted 

field, we concentrate on the transmission coefficient .t (k), and leave the reflection 

coefficient .r(k) to future investigations.



260 G. Kristensson

In . C+, we have by Cauchy’s theorem (note that .tA ∈ L2(R) if .A ∈ L2(R)) [20] 

. t (κ)A(κ) = 1

2π i

l ∞

−∞

t (k')A(k')

k' − κ
dk', κ ∈ C+

and 

. |t (κ)| ≤ 1

2π |A(κ)|

l ∞

−∞

|A(k')|
|k' − κ| dk', κ ∈ C+

Let .κ1 = k1 + iς1, .ς1 > 0, and .A(κ) = 1/(κ − κ∗
1 ) = 1/(κ − k1 + iς1), which is a 

causal transform and belongs to .L2(R), i.e., 

. |t (κ1)| ≤ ς1

π

l ∞

−∞

1

(k' − k1)2 + ς2
1

dk' = 1, κ1 ∈ C+

and we get 

. |t (κ)| ≤ 1, κ ∈ C+ ∪ R

3.2 Sum Rule with the Logarithm 

Construct a Herglotz function .h1(κ), see Appendix 5 for definition, from the 

transmission coefficient .t (κ). Following [7], we obtain in an appropriately chosen 

branch of the logarithm 

. h1(κ)
def= −i ln

l

t (κ)

N
l l

n=1

1 − κ/κ∗
n

1 − κ/κn

l

where . κn, .n = 1, 2, . . . , N , are the zeros (if any) of the transmission coefficient . t (κ)

in the upper complex plane . C+, i.e., .Im κn > 0, .n = 1, 2, . . . , N . The product is 

called a Blaschke product [23]. Note that for real k, all terms in the product have 

modulus 1, i.e., 

. 

l

l

l

l

1 − k/κ∗
n

1 − k/κn

l

l

l

l

= 1, k ∈ R

and 

. Im h1(k) = − Re ln

l

t (k)

N
l l

n=1

1 − k/κ∗
n

1 − k/κn

l

= − ln |t (k)|, k ∈ R
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and .Im h1(k) is an even function of the real argument k. 

The low-frequency behavior of .h1(κ) becomes 

. h1(κ) = −i

l

ln t (κ) +
N

7

n=1

ln
l

1 − κ/κ∗
n

l

−
N

7

n=1

ln (1 − κ/κn)

l

= −iκ

l

iH +
N

7

n=1

l

1

κn

− 1

κ∗
n

l

l

+o(κ) = κ

l

H + 2

N
7

n=1

Im
1

κn

l

+o(κ), κ → 0

where H is real and has dimension length. With the notation introduced in 

Appendix 5, the asymptotic expansion at the origin is of order .N0 = 1, and 

.a−1 = a0 = 0, .a1 = H + 2
EN

n=1 Im 1
κn

. 

At high frequencies, under the assumption that transmission has a limit value . t∞, 

we have 

. h1(κ) = o(κ), κ → ∞

With the notation of Appendix 5, the asymptotic expansion at infinity is of order 

.N∞ = −1, and .b1 = 0. 

Consequently, see Theorem C.2 in Appendix 5 

. − 2

π

l ∞

0

ln |t (k)|
k2

dk = 2

π

l ∞

0

Im h1(k)

k2
dk = H + 2

N
7

n=1

Im
1

κn

≤ H

The integral is well-behaved. This is the exact value of the sum rule. The sum rule 

as an integral in the wavelength .λ = 2π/k reads4 

.

l ∞

0

ln
1

|t (λ)| dλ = −
l ∞

0

ln |t (λ)| dλ = −2π

l ∞

0

ln |t (k)|
k2

dk ≤ π2H (9) 

In the next subsection, we use this sum rule to find bounds on the product of the 

bandwidth and the prescribed transmission rate. 

3.2.1 Physical Bound 

Estimate the left-hand side of the wavelength integral in (9) as follows. For a 

given transmission level .t0 ∈ (0, 1], let .I (t0) be the interval of wavelength where 

transmission is less than . t0, i.e., .|t (λ)| ≤ t0 ≤ 1, .λ ∈ I (t0). The interval .I (t0) can

4 We make a small abuse in notation of the transmission coefficient t as the same function in both 

k and . λ. 
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consist of a union of disjoint parts. In most situations, it is a connected interval. 

Then, since the integrand in (9) is a positive function, a crude estimate is 

. |I (t0)| ln
1

t0
≤

l

I (t0)

ln
1

|t (λ)| dλ ≤
l ∞

0

ln
1

|t (λ)| dλ ≤ π2H

where .|I (t0)| denotes the length of the interval .I (t0). We get the physical bound 

.|I (t0)| ≤ π2H

ln 1
t0

= π2H

|ln t0|
(10) 

A similar bound for a periodic array has been reported in [7]. A numerical example 

of this physical bound is presented in Sect. 4.1. In most practical situations, . |I (t0)|
denotes the largest wavelength for which .|t (λ)| ≤ t0, see Sect. 4.1. 

3.3 Sum Rule with Pulse Herglotz Function 

A more elaborate Herglotz function is the pulse Herglotz function [19], i.e., 

. hA(z) = − 1

π

l A

−A

1

z − t
dt = 1

π
ln

z − A

z + A
, Im z > 0

where .A > 0, and the branch cut of the logarithm is assumed along the negative 

real axis. Details on this function are presented in Appendix 5. 

The asymptotes of .hA(z) are 

. hA(z) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

i − 2z

πA
+ O(z2), z→̂ 0

−2A

zπ
+ O(z−2), z→̂∞

The symbol .z→̂ 0 stands for the non-tangential limit .|z| → 0 within some Stoltz 

domain .{z ∈ C+ : θ ≤ arg(z) ≤ π − θ} with the angle .θ ∈ (0, π/2]. For more  

details, see Appendix 5. 

The imaginary part of .hA(z) is non-negative and bounded by unity in the upper 

half plane . C+. Specifically, the inner part of the circle .|z| = A in the upper complex 

half plane maps to .1/2 < Im hA(z) < 1, see Fig. 13. In the region outside the circle 

.|z| = A in the upper complex half plane, we have .0 < Im hA(z) < 1/2. 

The Möbius transformation 

.w(z) = i
1 + z

1 − z
⇔ z(w) = w − i

w + i
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maps the unit circle to the upper complex half plane. Moreover, a circle centered 

at the origin with radius .t0 ∈ (0, 1] in the z-plane is mapped to a circle centered at 

.w0 = i(1 + t2
0 )/(1 − t2

0 ) with radius .r0 = 2t0/(1 − t2
0 ) in the w-plane. 

Define the Herglotz function .h2(κ)
def= hA(w(t (κ))). The asymptotes of . w(t (κ))

are 

. w(t (κ)) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

− 2

κH
+ O(1), κ →̂ 0

i
1 + t∞
1 − t∞

+ O(κ−1), κ →̂ ∞

where . t∞ is the assumed high frequency limit of the transmission coefficient, and 

. h2(κ)
def= hA(w(t (κ))) =

⎧

⎪

⎨

⎪

⎩

κAH

π
+ O(κ2), κ →̂ 0

o(κ), κ →̂ ∞

Note that .w(t (−k)) = w(t∗(k)) = −w∗(t (k)) and .h2(−k) = hA(−w∗(t (k))) for 

.k ∈ R. Since .hA(−z∗) = −h∗
A(z), we get .h2(−k) = −h∗

2(k) for .k ∈ R. With the 

notation in Appendix 5, the asymptotic expansion at the origin is of order .N0 = 1, 

and .a−1 = a0 = 0, .a1 = AH/π , and the asymptotic expansion at infinity is of 

order .N∞ = −1, and .b1 = 0. 

We now determine the value of the scale factor .A = A(t0). The aim is to find 

bounds on the bandwidth for transmission .|t | ≤ t0 ∈ (0, 1]. The connection between 

parameter .A(t0) and the suggested threshold .|t | = t0 ≤ 1 is found by 

. A(t0) =
1 + t2

0

1 − t2
0

+ 2t0

1 − t2
0

= 1 + t0

1 − t0
> 0

This choice of .A(t0) maps the circle .|t | ≤ t0 to a circle in the .w/A-plane centered 

at .i(1 + t2
0 )/(1 + t0)

2 with radius .2t0/(1 + t0)
2 (green discs in Fig. 2). 

Consequently, see Theorem C.2 in Appendix 5 

.
2

π

l ∞

0

Im h2(k)

k2
dk = AH

π
= 1 + t0

1 − t0

H

π
(11) 

The integral is well-behaved. The sum rule as an integral in the wavelength . λ =
2π/k reads 

.

l ∞

0

Im h2(λ) dλ = 2π

l ∞

0

Im h2(k)

k2
dk = πAH = π

1 + t0

1 − t0
H (12) 

This is the exact value of the sum rule with the pulse Herglotz function.
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Fig. 2 The Möbius transform .w(t)/A. The green circle is the image of . |t (k)| ≤ t0 = 0.5

In the next subsection, we use this sum rule to find a bound on the bandwidth 

given a certain transmission level . t0. The sum rule is exact, and it can be used 

to verify the numerical computations of the transmission coefficient. In fact, for 

a given particle and transmission level . t0, the right-hand side of (12) is given, and 

the integral on the left-hand side is determined. 

3.3.1 Physical Bound 

We now apply the exact sum rule in (12) to get a physical bound on the bandwidth of 

the transmission coefficient, given a certain threshold .t0 ∈ (0, 1]. Let the wavelength 

interval .I (t0) denote the interval where .|t | ≤ t0. The interval .I (t0) can consist of a 

union of disjoint parts. In this interval, the integrand in the sum rule is larger than 

.1/2 by construction, and we get by estimating the integral 

. 
|I (t0)|

2
≤

l

I (t0)

Im h2(λ) dλ ≤
l ∞

0

Im h2(λ) dλ = π
1 + t0

1 − t0
H

where .|I (t0)|, which is related to the bandwidth of the problem, denotes the length 

of the interval .I (t0). In summary, we get 

.|I (t0)| ≤ 2π
1 + t0

1 − t0
H (13) 

A numerical example of this physical bound is presented in Sect. 4.2. 

4 Numerical Results 

In a series of numerical examples, we illustrate the results in this chapter. Examples 

of both physical bounds and numerical accuracy are presented.
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Fig. 3 The absolute value of the transmission coefficient t as a function of the normalized 

wavelength .λ/a for a slab of thickness .D/a = 20, volume fraction .ϕ = 15%, permittivity 

.e1/e = 4, and permeability . μ1/μ = 1

4.1 First Physical Bound 

We start with the physical bound obtained in Sect. 3.2. In Figs. 3 and 4, the  

modulus and the negative logarithm of the modulus of the transmission coefficient, 

respectively, are depicted as a function of the scaled wavelength . λ/a. In all  

figures5 presented in this chapter, the dielectric, spherical particles of radius a 

have permittivity .e1/e = 4, and permeability .μ1/μ = 1, the slab has thickness 

.D/a = 20, and the volume fraction is .ϕ = 15%. 

The value of the transmission coefficients in the complex plane as a function 

of .λ/a along the curve is shown in Fig. 5. We notice that the curve circles around 

the origin, which indicates that there are several zeros in the upper half plane [10, 

Th. 4.10a]. The exact behavior at the origin is hard to ensure due to limited 

numerical precision at low transmission levels. 

The area under the entire curve in Fig. 4 is approximately .20.8a while . π2H =
24.1a. The gap between these two numbers indicates that there are zeros in the upper 

complex half-plane. If we integrate over frequencies instead for over the wavelength, 

i.e., 

. −
l ∞

0

ln |t (k)|
k2

dk ≤ πH

2

we obtain by numerical integration of the integral on the left-hand side .3.45a, which 

should be compared with the value .πH/2 = 3.84a.

5 Figure 9 is an exception. 
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Fig. 4 The function .ln(1/|t |) as a function of the normalized wavelength .λ/a for a slab of 

thickness .D/a = 20, volume fraction .ϕ = 15%, permittivity .e1/e = 4, and permeability 

.μ1/μ = 1. The red box has the same area as the area under the curve (.≈20.8a) 

Fig. 5 The complex-valued 

transmission coefficient, t , in  

the complex plane as a 

function of the wavelength 

.λ/a for a slab of thickness 

.D/a = 20 and volume 

fraction .ϕ = 15%. The curve  

starts at .λ/a = 0 circling the 

origin and ends at 1 as 

.λ/a → ∞. Green disc shows 

the transmission rate 

. |t | ≤ t0 = 0.5

The bandwidth of the peak in Fig. 4 can be estimated by the equating a box (red 

box in the figure) such that the area under the entire curve and that of the box are 

the same (.≈20.8a). More examples of estimating the bandwidth are presented in 

e.g., [24]. The length of the wavelength interval of the red box is .1.63 in units of a. 

At a transmission threshold of .t0 = 0.5, the right-hand side in (10) is calculated to 

.π2H/ |ln t0| = 34.8a. This value is much larger than the numerical value . |I (t0)| ≈
5.3a obtained in the figure. However, this comes to no surprise, since the sum rule 

has to hold for all possible configurations, which have the same value of H and . t0. 

This illustration shows that our configuration is far from the extreme value.
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Fig. 6 The function .Im h2(λ/a) for .t0 = 0.5 as a function of the normalized wavelength .λ/a for 

a slab of thickness .D/a = 20, volume fraction .ϕ = 15%, permittivity .e1/e = 4, and permeability 

. μ1/μ = 1

Fig. 7 The components of the complex-valued .w/A for .t0 = 0.5, in the complex plane as a  

function of the wavelength .λ/a for a slab of thickness .D/a = 20 and volume fraction .ϕ = 15%. 

The curve starts at .λ/a = 0 inside the green circle and ends at .−∞ + i/3 as . λ/a → ∞

4.2 Second Physical Bound 

The Herglotz function, .h2(κ), defined in Sect. 3.3, is depicted as a function of 

.λ/a in Fig. 6 for the same material data and geometry as in Sect. 4.1. Again, the  

transmission threshold is .t0 = 0.5. The argument .w(t (κ))/A of the Herglotz 

function is shown in Fig. 7. Note that the argument in the Herglotz function stays 

above the negative real axis as .λ/a → ∞. 

An upper bound of the wavelength interval from (13) is .2πHA(t0) = 46.1a, 

which is larger than the limit with the first physical bound in Sect. 3.2, and much 

larger than the value .|I (t0)| ≈ 5.3a obtained from the numerical example. Again,
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Fig. 8 The function .Im h2(ka)/(ka)2 for .t0 = 0.5 as a function of frequency ka for a slab of 

thickness .D/a = 20, volume fraction .ϕ = 15%, permittivity .e1/e = 4, and permeability . μ1/μ= 1

this is not surprising, since the sum rule holds for all possible configurations having 

the same value of H and . t0. 

4.2.1 Numerical Accuracy Tested 

Numerical integration of the area under the entire curve in Fig. 6 gives a value of 

approximately .21.3a. This value is smaller than the exact value .πHA(t0) = 23.0a, 

which can be explained by loss of numerical procession at higher frequencies or the 

choice of numerical integration by the trapezoidal rule. As an alternative, we instead 

integrate over normalized frequency . x = ka, see  (12), i.e., 

. 

l ∞

0

Im h2(x)

x2
dx = A(t0)H

2a

This form of the sum rule weights low frequencies higher and higher frequencies 

less, see Fig. 8. Low-frequency data have higher numerical precision, which guar-

antee a more accurate test of the sum rule. With the same data as aforementioned, 

the right-hand side is .A(t0)H/2 = 3.67a, and the left-hand side is by numerical 

integration approximately .3.58a. This is less than a .3% discrepancy, which is 

sufficient for most applications. A numerical test with different transmission levels 

.t0 ∈ (0, 1) shows that the agreement gets better for higher values of . t0. 

However, since the sum rule aforementioned is an exact identity, possible sources 

of error are important to identify. Some potential sources of this discrepancy are 

listed in Table 1. The integration is performed by both the trapezoidal and Simpson’s 

rule over the interval .ka ∈ [0.00001, 8] (nonuniform points), which seems to suffice. 

Moreover, potential convergence problems in solving (4) have been eliminated by a
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Table 1 Possible 

explanations of the 

discrepancies in the sum rule 

Possible errors 

Missing parts in the integration interval . [0,∞)

Inappropriate numerical quadrature 

Numerical solution of the system of integral equations 

Correct pair correlation function—boundary effects 

Effect of QCA 

Fig. 9 The function .Im h2(ka)/(ka)2 for .t0 = 0.5 as a function of frequency ka for a slab of 

thickness .D/a = 100, volume fraction .ϕ = 15%, permittivity .e1/e = 4, and permeability . μ1/μ= 1

comparison with an independent implementation [8]. Hence, with some confidence, 

we can eliminate these causes to the discrepancy. 

However, a more likely cause, we find in the choice of the pair correlation 

function .g(r). We assume the pair correlation function (the Percus–Yevick approx-

imation is employed) only depends on the distance between two particles, which 

definitely is an approximation of the correct pair correlation function depending 

on two points, i.e., .g(r, r '). Specifically, close to the boundary, there are effects 

that are not included in our choice of pair correlation function. The importance of 

these boundary effects is hard to estimate. A thicker slab should make these effects 

smaller, since then the boundary is a smaller portion of the slab geometry. Indeed, 

a computation with a thicker slab, .D/a = 100 (all other parameters the same), 

confirms this conjecture, and the error is now .0.6%, see Fig. 9. 

The importance of the correct pair correlation is further emphasized if we 

compare the sum rule evaluated by the hole correction (HC) and the Percus– 

Yevick approximation (PY). The result is displayed in Fig. 10, where numerical 

integration with the hole correction results in a large error in the sum rule. The 

hole correction seems not to generate a transmission coefficient that complies with 

energy conservation [15], which seems to be the cause of the this huge discrepancy.
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Fig. 10 The transmission coefficient for the hole correction (HC) and Percus–Yevick approxima-

tion as a function of frequency ka for a slab of thickness .D/a = 20, volume fraction .ϕ = 15%, 

permittivity .e1/e = 4, and permeability . μ1/μ = 1

Finally, the Quasi Crystalline Approximation is assumed in the derivation of the 

system of integral equations in (4). How this approximation affects the result, and 

whether the sum rule can be a test on this assumption is an open question. 

5 Discussion and Conclusions 

Physical bounds on bandwidth and slab thicknesses are important tools in the design 

of slab configurations with specific transmission performance. In this chapter, 

we have developed two different sum rules for the transmission coefficient. The 

particles of the slab are assumed to be passive, and the system has to satisfy a 

causality condition. The sum rules are then employed to obtain physical bounds on 

a combination of bandwidth and transmission rates. The exact sum rule also serves 

as an independent check on the numerical precision of the numerical calculations. 

Numerical illustrations show that the physical bound is not obtained, and these 

examples show that the constructions are far from extreme designs. The test of 

numerical accuracy shows that the precision is satisfactory. 
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Appendix A: The Expansion Coefficients 

In this appendix, the coefficients .Aτ lτ 'l'λ in (5) are reviewed [11]. We have 

Aτ lτ 'l'λ = −2π

l

τ '=1 τ '=2 

τ=1 Cll'λ −Dll'λ 

τ=2 Dll'λ Cll'λ

l

where 

. Cll'λ = 1

2
il

'−l+λ(2λ + 1)

l

(2l + 1)(2l' + 1)

l(l + 1)l'(l' + 1)

×
l

l l' λ

0 0 0

ll

l l' λ

1 −1 0

l

l

l(l + 1) + l'(l' + 1) − λ(λ + 1)
l

. Dll'λ = 1

2
il

'−l+λ+1(2λ + 1)

l

(2l + 1)(2l' + 1)

l(l + 1)l'(l' + 1)

×
l

l l' λ − 1

0 0 0

l l

l l' λ

1 −1 0

l

l

λ2 − (l − l')2
l

(l + l' + 1)2 − λ2

and where .

l

· · ·
· · ·

l

denotes Wigner’s 3j symbol [3]. Both .Cll'λ and .Dll'λ are real 

numbers, due to the properties of the Wigner’s 3j symbol. The first non-zero ones 

are 

. C11λ = −δλ,0 + 1

2
δλ,2, D11λ = 3

2
δλ,1

Appendix B: Low Frequency Solution 

In this appendix, we solve the system of integral equations in (4) in the limit of small 

.ε = ka for the HC correction under the constraint that .d/a (or .D/a) is constant.6 

Only .l = 1 and .m = 1 contribute in this limit. Moreover, a polarization of the 

incident wave in the . ̂x direction engages only .{τ, σ } = {1, o}, {2, e}. Therefore, in

6 The low frequency behavior under the Percus–Yevick approximation is also solvable, and the 

results are presented in a future publication. 
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the analysis, we suppress the . σ , m, and l indices, and the equations to solve are [11] 

(.ζ = kz, ζ1 = kz1, ζ2 = kz2, .kd = ζ2 − ζ1): 

. fτ (ζ ) = tτ1aτ eiζ + n0tτ1

k3

2
7

τ '=1

l ζ2

ζ1

Kττ '(ζ − ζ ')fτ '(ζ ') dζ ', ζ ∈ [ζ1, ζ2]

where 

. aτ1 = −i−τ
√

6πE0

and [11] 

Kττ '(ζ ) =
l

τ '=1 τ '=2 

τ=1 2πI0(ζ, 2ε) − πI2(ζ, 2ε) −3πI1(ζ, 2ε) 

τ=2 3πI1(ζ, 2ε) 2πI0(ζ, 2ε) − πI2(ζ, 2ε)

l

The explicit values of .Il(ζ, ε), .l = 0, 1, 2 are [11] 

. I0(ζ, 2ε) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

e−iζ , ζ ≤ −2ε

e2iεP0

l

ζ
2ε

l

, −2ε < ζ < 2ε

eiζ , ζ ≥ 2ε

. I1(ζ, 2ε) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ie−iζ , ζ ≤ −2ε

−ie2iεP1

l

ζ
2ε

l

, −2ε < ζ < 2ε

−ieiζ , ζ ≥ 2ε

. I2(ζ, 2ε) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−e−iζ , ζ ≤ −2ε

e2iε
iP0

l

ζ
2ε

l

− (i + 2ε)P2

l

ζ
2ε

l

2ε
, −2ε < ζ < 2ε

−eiζ , ζ ≥ 2ε

where .Pl(x) denotes the Legendre polynomials. The dominant terms of the kernel 

in the interval (inside the hole correction) .|ζ | ≤ 2ε are 

Kττ '(ζ ) = 
π 

2iε 

⎛ 

⎝ 

τ '=1 τ '=2 

τ=1 P0

l

ζ 
2ε

l

− P2

l

ζ 
2ε

l

+ O(ε) O(ε) 

τ=2 O(ε) P0

l

ζ 
2ε

l

− P2

l

ζ 
2ε

l

+ O(ε) 

⎞ 

⎠ 

and outside the hole correction the terms are of the order .O(1) and therefore 

contribute to the solution with higher-order powers in . ε.
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Fig. 11 The domain of 

integration in . ζ ' with the hole 

correction in yellow 

Divide the integration interval .[ζ1, ζ2] in a singular hole correction part . ζ − ζ ' ∈
[−2ε, 2ε] and the remaining interval outside the hole correction. The integrals over 

the latter interval contain higher order contributions in . ε and are omitted. We have 

to leading order 

. fτ (ζ ) = tτ1aτ eiζ +n0tτ1

k3

l

|ζ−ζ '|≤2ε

Kττ (ζ−ζ ')fτ (ζ
') dζ ', ζ ∈ [ζ1, ζ2], τ = 1, 2

where the domain of integration is depicted in yellow in Fig. 11. 

In the integral, we replace .fτ '(ζ ') → fτ '(ζ )—the difference contributes with 

higher order terms in . ε. We have  

. fτ (ζ ) = tτ1aτ eiζ + n0tτ1

k3
fτ (ζ )

l

|ζ−ζ '|≤2ε

Kττ (ζ −ζ ') dζ ', ζ ∈ [ζ1, ζ2], τ = 1, 2

Integration over the yellow area in Fig. 11 contributes with one integral .I0(ζ ) and 

two integrals .I1(ζ ), I2(ζ ) at the boundary. We obtain 

. I0(ζ )
def= π

2iε

l ζ+2ε

ζ−2ε

P0

l

ζ − ζ '

2ε

l

−P2

l

ζ − ζ '

2ε

l

dζ ' = −iπ

l 1

−1

P0 (t)−P2 (t) dt

= −2iπ, ζ1 + 2ε ≤ ζ ≤ ζ2 − 2ε

The two remaining parts at the boundaries of the slab are
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. I1(ζ )
def= π

2iε

l ζ+2ε

ζ1

P0

l

ζ − ζ '

2ε

l

− P2

l

ζ − ζ '

2ε

l

dζ '

= − iπ

2

l

3
ζ − ζ1

2ε
+ 2 −

l

ζ − ζ1

2ε

l3
l

, ζ1 ≤ ζ ≤ ζ1 + 2ε

and 

. I2(ζ )
def= π

2iε

l ζ2

ζ−2ε

P0

l

ζ − ζ '

2ε

l

− P2

l

ζ − ζ '

2ε

l

dζ '

= − iπ

2

l

2 − 3
ζ − ζ2

2ε
+

l

ζ − ζ2

2ε

l3
l

, ζ2 − 2ε ≤ ζ ≤ ζ2

The set of integral equations simplifies to leading order to 

. fτ (ζ ) = tτ1aτ eiζ + n0tτ1

k3
fτ (ζ )

⎧

⎪

⎪

⎨

⎪

⎪

⎩

I1(ζ ), ζ1 ≤ ζ ≤ ζ1 + 2ε

I0(ζ ), ζ1 + 2ε ≤ ζ ≤ ζ2 − 2ε

I2(ζ ), ζ2 − 2ε ≤ ζ ≤ ζ2

with solutions 

. fτ (ζ ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

tτ1aτ eiζ

1 − Cτ I1(ζ )
, ζ1 ≤ ζ ≤ ζ1 + 2ε

tτ1aτ eiζ

1 − Cτ I0(ζ )
, ζ1 + 2ε ≤ ζ ≤ ζ2 − 2ε

tτ1aτ eiζ

1 − Cτ I2(ζ )
, ζ2 − 2ε ≤ ζ ≤ ζ2

where the constant . Cτ is 

. Cτ = n0tτ1

k3
= 3ϕtτ1

4πε3

D

d

Finally, we can calculate . yτ in (2) for .l = 1. 

.yτ =
l ζ2

ζ1

fτ (ζ )e−iζ dζ

= −i−τ tτ1

√
6πE0

ll ζ1+2ε

ζ1

dζ

1 − Cτ I1(ζ )
+ kd − 4ε

1 + 2iπCτ

+
l ζ2

ζ2−2ε

dζ

1 − Cτ I2(ζ )

l
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= −i−τ tτ1 

√
6πE0

l

kd − 4ε 

1 + 2iπCτ 

+ 4ε

l 1 

0 

dt 

1 + 
iπ 

2 
Cτ

l

2 + 3t − t3
l

l

= −i−τ tτ1 

√
6πεE0

l

d/a 

1 + 2iπCτ 

+ ACorr 
τ

l

where the correction term .ACorr
τ is 

. ACorr
τ = 4

l 1

0

dt

1 + iπ
2

Cτ

l

2 + 3t − t3
l − 4

1 + 2iπCτ

The remaining integral in this expression can be solved analytically by finding the 

roots of the denominator and a partial fraction of the integrand. In an numerical 

illustration, it is more convenient to numerically compute the integral than to try to 

find the analytic solution. 

The constant H in (6) can now be determined from the low-frequency limit of 

the transmission coefficient in (1). The result is 

. H = 2πn0

ik4E0

2
7

τ=1

iτ−2

l

3

8π
yτ = 3πn0

ik4

2
7

τ=1

tτ1ε

l

d/a

1 + 2iπCτ

+ ACorr
τ

l

= −3iπa

2
7

τ=1

Cτ

l

d/a

1 + 2iπCτ

+ ACorr
τ

l

= HAppr + HCorr

where 

. 

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

HAppr = −3iπ

2
7

τ=1

Cτd

1 + 2iπCτ

= −9iϕD

2
7

τ=1

tτ1

4ε3 + 6iϕtτ1
D
d

HCorr = −3iπa

2
7

τ=1

CτA
Corr
τ

= −36iϕ
D

d
a

2
7

τ=1

l

l 1

0

tτ1 dt

4ε3 + 3i
2
ϕtτ1

D
d

l

2 + 3t − t3
l − tτ1

4ε3 + 6iϕtτ1
D
d

l

(14) 

Appendix C: Herglotz Functions and Integral Identity 

In this appendix, we investigate the Herglotz functions and some integral identities 

with these functions. More technical details can be found in [1, 14, 19, 25].
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A Herglotz function .h(z) is defined as [19] 

Definition C.1 A function . h(z) is called a Herglotz function if 

1. .h(z) is defined and analytic everywhere in the upper complex half-plane, . C+ =
{z ∈ C : Im z > 0}

2. .Im h(z) ≥ 0 for all . z ∈ C+

If .h(z) is a Herglotz function, then .−1/h(z) is a Herglotz function, and if .h(z) and 

.g(z) are Herglotz functions, the composition .h(g(z)) is a new Herglotz function, 

provided .g(z) does not attain real values for .z ∈ C+. 

We adopt the following definitions [19]: 

Definition C.2 If the Herglotz function .h(z) satisfies .h(−z∗) = −h∗(z), .z ∈ C+, 

the Herglotz function is symmetric. 

Definition C.3 If for .N ≥ −1, the Herglotz function .h(z) satisfies 

. h(z) =
N

7

n=−1

b−nz
−n + o

l

z−N
l

, as z→̂∞

where the constants .b−n, .n = −1, 0, . . . , N are all real, then .h(z) admits at . z =
∞ an asymptotic expansion of order N . The symbol .z→̂∞ stands for the non-

tangential limit .|z| → ∞ within some Stoltz domain . {z ∈ C+ : θ ≤ arg(z) ≤ π −θ}
with the angle .θ ∈ (0, π/2]. 
Definition C.4 If for .N ≥ −1, the Herglotz function .h(z) satisfies 

. h(z) =
N

7

n=−1

anz
n + o

l

zN
l

, as z→̂ 0

where the constants . an, .n = −1, 0, . . . , N are all real, then .h(z) admits at .z = 0 an 

asymptotic expansion of order N . The notation .z→̂ 0 stands for the non-tangential 

limit .|z| → 0 within some Stoltz domain .{z ∈ C+ : θ ≤ arg(z) ≤ π − θ} with the 

angle .θ ∈ (0, π/2]. 
The following two theorems are instrumental [1, 19]: 

Theorem C.1 Let .h(z) be a Herglotz function. Then for some integer .N∞ ≥ 0 the 

following integral 

. lim
ε→0+

lim
y→0+

l

ε<|x|<1/ε

x2N∞ Im h(x + iy) dx

exists as a finite number if and only if .h(z) admits an asymptotic expansion of order 

.2N∞ + 1 at .z = ∞. In this case
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. lim
ε→0+

lim
y→0+

1

π

l

ε<|x|<1/ε

xn Im h(x + iy) dx =
l

a−1 − b−1, n = 0

−b−n−1, 0 < n ≤ 2N∞

holds. 

Theorem C.2 Let .h(z) be a Herglotz function. Then for some integer .N0 ≥ 1 the 

following integral 

. lim
ε→0+

lim
y→0+

l

ε<|x|<1/ε

Im h(x + iy)

x2N0
dx

exists as a finite number if and only if .h(z) admits an asymptotic expansion of order 

.2N0 − 1 at .z = 0. In this case 

. lim
ε→0+

lim
y→0+

1

π

l

ε<|x|<1/ε

Im h(x + iy)

xn
dx =

l

a1 − b1, n = 2

an−1, 2 < n ≤ 2N0

holds. 

Appendix D: The Pulse Herglotz Function 

In this appendix, we analyze the pulse Herglotz function. We have7 

. h(z) = − 1

π

l 1

−1

1

z − t
dt = 1

π
ln

z − 1

z + 1
, Im z ≥ 0

where the branch cut of the logarithm is assumed along the negative real axis 

(principal branch cut, .−π < arg z ≤ π ). 

We focus on the imaginary part of this function in the upper complex half plane, 

.z = x + iy, .y ≥ 0. 

. Im h(z) = 1

π
arg

z − 1

z + 1

Points .z = x+ iy with constant phase . θ of the expression .(z−1)/(z+1), see Fig. 12 

satisfy 

7 An alternative expression of the pulse Herglotz function is [21] 

. h(z) = i − 2

π
arctanh(z), z ∈ C+

where the values on the real axis are taken as limits as .y → 0+ (upper side of the branch cuts).
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Fig. 12 The argument 

. arg(z − 1)/(z + 1) = θ =
θ1 − θ2 as a function of the 

angles . θ1 and . θ2

Fig. 13 The value of the 

imaginary part of the function 

.h(x) in the upper complex 

half plane 

. tan θ = 2y

x2 + y2 − 1
, θ ∈ [0, π ]

This is the equation of a circle with center at .z0 = x0 + iy0 and radius r , where 

. 

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x0 = 0

y0 = 1

tan θ

r =
l

1

tan2 θ
+ 1

Im h(z) = θ/π

The imaginary part of .h(z) is bounded by unity in the upper complex half plane, 

.0 ≤ Im h(z) ≤ 1. Moreover, inside the unit circle in the upper complex half plane, 

.1/2 < Im h(z) ≤ 1, see Fig. 13. On the real axis .z = x we have 

. Im h(z) =
l

1, −1 < x < 1

0, (−∞,−1) ∪ (1,∞)

The asymptotes of .h(z) are 

.h(z) =

⎧

⎪

⎨

⎪

⎩

i − 2z

π
+ O(z2), z→̂ 0

− 2

zπ
+ O(z−2), z→̂∞
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We also notice that .h(z) is a symmetric Herglotz function. In fact, for the 

principal branch, we have outside the branch cut 

. ln(z∗) = (ln z)∗, ln
1

z
= − ln z

which leads to 

. h(−z∗) = 1

π
ln

z∗ + 1

z∗ − 1
=

l

1

π
ln

z + 1

z − 1

l∗
= −

l

1

π
ln

z − 1

z + 1

l∗
= −h∗(z), z ∈ C+
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Optics with Tightly Interlaced Matched 

Ambidextrous Bilayers 

Francesco Chiadini , Roberta De Simone , Vincenzo Fiumara , 

and Akhlesh Lakhtakia 

1 Introduction 

The search for advanced, high-performance optical devices is constantly evolving 

due to the increasing complexity of systems that are required to deliver high-

precision performance, reliability, environmental stability, etc. [1–4]. Often, the 

key lies in the use of new materials exhibiting special characteristics. Nowadays, 

researchers focus on artificially engineered materials that offer functionalities not 

possible with natural materials [5]. A host of such artificial materials, usually 

made up of subwavelength components such as nano-rods and nano-layers, have 

been proposed, theoretically investigated, and experimentally characterized. Among 

these innovative materials, we draw attention to the Tightly Interlaced Matched 

Ambidextrous Bilayer (TIMAB). 

The TIMAB is a non-homogeneous nano-structured material consisting of a 

cascade of bilayer cells made up of two chiral sculptured thin films (CSTFs) that 

are identical except for their structural handedness [6, 7]. Simpler than a CSTF 

is a columnar thin film (CTF), which has a columnar morphology, i.e., it is an 

assembly of identical nano-columns, all parallel to one another. It is usually grown 

by physical vapor deposition (PVD) by creating a collimated vapor flux in a low-
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Fig. 1 Schematics of the CSTF and TIMAB morphologies. The red coils are right-handed and the 

green coils are left-handed. (a) Right-handed CSTF. (b) Left-handed CSTF. (c) TIMAB  

pressure chamber. For that purpose, a solid material is placed in a tungsten boat 

inside the chamber. The boat is resistively heated to allow the material to evaporate 

and thereby generate a collimated vapor flux directed toward a flat substrate inside 

the chamber. The direction of the vapor flux is at angle χv ∈ (0◦, 90◦].with respect to 

the substrate plane. The CTF is the assembly of nano-columns, inclined at an angle 

χ ≥ χv . with respect to the substrate plane, which forms on the substrate. The angle 

χ . depends on the angle χv . according to the relationship χ = tan−1(γ tan χv)., where 

the parameter γ . depends on the evaporated material [8, 9]. When the substrate is 

rotated uniformly about a central normal axis passing through it, nano-helixes form 

instead of nano-columns. The resulting film is a CSTF [10]. 

The structure of a CSTF can be either right-handed or left-handed, depending on 

the sense of substrate rotation. Whereas the handedness of a CSTF is invariant along 

the axis normal to the substrate, in the TIMAB, the handedness flips in the center of 

the bilayer cell so that the cell consists of one period each of two CSTFs, which are 

identical except in structural handedness [7], as depicted schematically in Fig. 1. 

To exemplify the enhancement of device performances leveraged by the use of 

TIMAB, we present the distinguishing characteristics of two optical phenomenons 

involving this material: (i) surface-plasmon-polariton (SPP) wave propagation 

guided by a planar metal/TIMAB interface and (ii) polarization-universal bandgap 

on axial excitation. The first part of this chapter is dedicated to the features of 

SPP waves propagating guided by the planar interface of a metal and a TIMAB, 

in terms of phase speed, attenuation rate, and field profile [11]. In the second part of 

the chapter, we show that a TIMAB can be used to realize a polarization-universal 

bandgap [6, 7] and that linear chirping of the pitch of TIMAB’s CSTF constituents 

results in a significantly widening of that bandgap [12]. 

An exp (−iωt). dependence on time t is used, with ω . as the angular frequency 

and i =
√

−1. as the imaginary unity; k0 = ω
√

ε0μ0 . is the free-space wavenumber 

and λ0 = 2π/k0 . is the free-space wavelength, with μ0 . as the free-space permeability 

and ε0 . as the free-space permittivity; c0 = 1/
√

ε0μ0 . is the speed of light in free 

space; and η0 =
√

μ0/ε0 . is the intrinsic impedance of free space. Vectors are
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represented in boldface; dyadics are doubly underlined; and Cartesian unit vectors 

are denoted by ux ., uy ., and uz .. Column vectors are in boldface and bracketed, and 

matrices are double underlined and bracketed. 

2 Tightly Interlaced Matched Ambidextrous Bilayer 

(TIMAB) 

The frequency-domain constitutive relations of a CSTF are written as [8, 10] 

.D(r, ω) = ε0 εCST F (h, z,o, χ, ω) · E(r, ω), (1a) 

and 

.B(r, ω) = μ0 H(r, ω), (1b) 

where 

. εCST F (h, z,o, χ, ω) = Sz (h, z,o) · Sy (χ) · εo
ref (ω) · S−1

y (χ) · S−1
z (h, z,o)

(2) 

is the relative permittivity dyadic [13]. The dyadic 

. Sz (h, z,o) = uzuz +
(

uxux + uyuy

0

cos
l

h
πz

o

l

+
(

uyux − uxuy

0

sin
l

h
πz

o

l

(3a) 

expresses a uniform rotation about the z axis with period 2o.. The parameter h takes 

the value 1 for CSTFs with structural right-handedness and the value −1. for CSTFs 

with structural left-handedness. The dyadic 

. Sy (χ) = uyuy + (uxux + uzuz) cos χ + (uzux − uxuz) sin χ (3b) 

expresses a rotation by angle χ . about the y axis. Finally, the dyadic 

.εo
ref (ω) = εa (ω) uzuz + εb (ω)uxux + εc (ω) uyuy (3c) 

contains the scalars ea (ω)., eb (ω)., and ec (ω). as the principal relative permittivities. 

These scalars depend on the angle χv . as [9, 14] 

.εa,b,c (ω) = [Aa,b,c (ω) + Ba,b,c (ω) (90 − χv)
2]2 , (4) 

where the angle χv . is to be provided in degree. The coefficients Aa,b,c . and Ba,b,c . 

depend on both χv . and the evaporant material.
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2.1 Periodic TIMAB 

A TIMAB is a periodic cascade of multiple bilayer cells, each cell containing a 

layer of a CSTF and a layer of its enantiomer, i.e., a CSTF identical except for 

structural handedness. Both layers are as thick as the structural period of the CSTF. 

So, whereas the structural handedness of a CSTF is invariant along the z axis, the 

structural handedness of a TIMAB flips across an interlayer interface. 

Suppose that a TIMAB comprises N > 1. bilayer cells. The nth bilayer cell, 

n ∈ [1, N ]., extends from zn−1 . to zn ., where zm = 4mo.. Instead of Eq. (1a), we use 

[6, 7] 

.D(r, ω) = ε0 εn (h, z, χ, ω) · E(r, ω), z ∈ (zn−1, zn) , n ∈ [1, N ] , (5a) 

where 

.εn =

⎧

⎨

⎩

εCST F (h, z,o, χ, ω) , z ∈ (zn−1, zn−1 + 2o)

εCST F (−h, z − 2o,o, χ, ω) , z ∈ (zn−1 + 2o, zn)

. (5b) 

2.2 Aperiodic TIMAB 

As perviously remarked, the two CSTFs in every bilayer cell are identical except in 

structural handedness. We can preserve that characteristic but alter the value of o. 

from bilayer cell to bilayer cell. For this aperiodic TIMAB, Eq. (5b) is modified to 

.εn =

⎧

⎨

⎩

εCST F (h, z,on, χ, ω) , z ∈ (zn−1, zn−1 + 2on)

εCST F (−h, z − 2on,on, χ, ω) , z ∈ (zn−1 + 2on, zn)

, (6) 

where z0 = 0. and zm =
m

l7

j=1

4oj .. 

3 SPP Wave Propagation 

SPP waves are electromagnetic waves that are guided by a planar interface of a 

metal and a dielectric material [15]. The propagation characteristics of such waves 

are tightly related to the constitutive properties of both partnering mediums [16, 17]. 

In this section, we recount the optical characteristics of SPP waves propagating at a 

planar metal/TIMAB interface, the TIMAB being periodic.
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Fig. 2 Schematics of the side 

view (y = 0.) of the  

boundary-value problem for 

SPP wave propagation 

z = 0 

x 

z 

y 

metal 

Periodic TIMAB 

3.1 Boundary-Value Problem 

We consider the canonical boundary-value problem schematically illustrated in 

Fig. 2 where the half space z < 0. is occupied by a metal with complex relative 

permittivity εmet ., and the half space z > 0. is occupied by a periodic TIMAB 

described by Eqs. (1b), (5a), and (5b) in the limit N → ∞.. We consider an SPP 

wave propagating at an angle ψ . with respect to the x axis in the transverse xy 

plane; thus, the direction of propagation is parallel to the unit vector uprop =
ux cos ψ + uy sin ψ ., ψ ∈ [0◦, 360◦).. Moreover, the SPP wave’s fields must decay 

far away from the interface, i.e., as |z| → ∞.. 

With q as the generally complex-valued wavenumber, the electric and magnetic 

phasors can be represented ∀ z ∈ (−∞,∞). as 

.

⎧

⎨

⎩

E(r) =
l

ex(z)ux + ey(z)uy + ez(z)uz

l

· exp
(

iquprop · r
0

H(r) =
l

hx(z)ux + hy(z)uy + hz(z)uz

l

· exp
(

iquprop · r
0

, (7) 

where the unknown functions ex(z)., ey(z)., ez(z)., hx(z)., hy(z)., and hz(z). have to be 

determined. For later use, we define the column vector 

. [f (z)] =

⎡

⎢

⎢

⎣

ex (z)

ey (z)

hx (z)

hy (z)

⎤

⎥

⎥

⎦

. (8) 

In the half space z < 0., the SPP wave’s fields are of the textbook variety: 

.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

E(r) =
l

A1us + A2

l

αmet

k0

uprop +
q

k0

uz

ll

· exp
(

iquprop · r
0

exp (−iαmetz)

H(r) =
1

η0

l

A1

l

αmet

k0

uprop +
q

k0

uz

l

− A2εmetus

l

· exp
(

iquprop · r
0

exp (−iαmetz)

, z < 0 , (9)
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where A1 . and A2 . are unknown scalars, 

.us = −ux sin ψ + uy cos ψ (10) 

is the vector that constitutes the orthogonal coordinate system
l

uprop,us,uz

l

., 

.αmet =
l

k2
0 εmet − q2 (11) 

is the attenuation constant in the z direction with the constraint 

.Im (αmet) > 0 (12) 

that must be enforced to ensure that the fields decay exponentially as z → −∞.. 

Equations (9) yield 

.

l

f
(

0−0l

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− sin ψ
αmet

k0

cos ψ

cos ψ
αmet

k0

sin ψ

αmet

k0η0

cos ψ
εmet

η0

sin ψ

αmet

k0η0

sin ψ −
εmet

η0

cos ψ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

A1

A2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (13) 

In the periodic TIMAB, [f (z)]. satisfies the 4 × 4.-matrix ordinary differential 

equation [10] 

.
d

dz
[f (z)] = i

l

P (s, z)
l

[f (z)] , (14) 

where the matrix 

.

l

P (s, z)
l

= ωε0

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 η2
0

0 0 −η2
0 0

sh εe cos
lπz

o

l

sin
lπz

o

l

−
l

εe cos2
lπz

o

l

+ εd

l

0 0

l

εe sin2
lπz

o

l

+ εd

l

−sh εe cos
lπz

o

l

sin
lπz

o

l

0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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+q 
εd (εa − εb) 

εaεb 

sin 2χ 

2 

× 

⎡ 

⎢ 
⎢

⎢

⎢

⎢

⎢

⎢ 
⎢

⎢ 
⎣ 

cos
lπz

o

l

cos ψ sh sin
lπz

o

l

cos ψ 0 0  

cos
lπz

o

l

sin ψ sh  sin
lπz

o

l

sin ψ 0 0  

0 0 sh sin
lπz

o

l

sin ψ −sh sin
lπz

o

l

cos ψ 

0 0  − cos
lπz

o

l

sin ψ cos
lπz

o

l

cos ψ 

⎤ 

⎥ 
⎥

⎥

⎥

⎥

⎥

⎥ 
⎥

⎥ 
⎦ 

+ 
q2 

ωε0 

εd 

εaεb 

⎡ 

⎢

⎢

⎢ 
⎢ 
⎣ 

0 0 cos ψ sin ψ − cos2 ψ 

0 0  sin2 ψ − cos ψ sin ψ 

0 0  0 0  

0 0  0 0  

⎤ 

⎥

⎥

⎥ 
⎥ 
⎦ 

+ 
q2 

ωμ0 

⎡ 

⎢

⎢

⎢

⎢ 
⎣ 

0 0 0 0  

0 0 0 0  

− cos ψ sin ψ cos2 ψ 0 0  

− sin2 ψ cos ψ sin ψ 0 0  

⎤ 

⎥

⎥

⎥

⎥ 
⎦ 

(15) 

with 

.εd =
εaεb

εa cos2 χ + εb sin2 χ
, (16) 

.εe = εc − εd , (17) 

and 

.s =

⎧

⎨

⎩

+1 z ∈ (0, 2o) ∪ (4o, 6o) ∪ . . . ,

−1 z ∈ (2o, 4o) ∪ (6o, 8o) ∪ . . . .

(18) 

Equation (4) can be used to write [18] 

.εd = [D0 + D1(90 − χv) + D2(90 − χv)
2]2 , (19) 

where the unit of χv . is degree and the coefficients D0,1,2 . depend on both χv . and the 

evaporant material. 

Equation (14) can be solved numerically by means of a piecewise uniform 

approximation technique [10, 11, 15] to yield the functional relationship
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. [f (4o)] =
l

Q
l

l

f
(

0+0l

, (20) 

where the matrix
l

Q
l

. is the characteristic matrix of one period of the TIMAB. 

Let us denote the four eigenvalues and the corresponding eigenvectors of
l

Q
l

. 

by σm . and [vm]., m ∈ [1, 4]., where Re (ln σ1) < 0., Re (ln σ2) < 0., Re (ln σ3) > 0. 

and Re (ln σ4) > 0.. In order to fulfill the condition that the fields must decay as 

z → ∞., we must set [15] 

.

l

f
(

0+0l

=
l

v1 v2

l

l

B1

B2

l

, (21) 

where B1 . and B2 . are unknown scalars. 

3.2 Dispersion Equation 

The use of Eqs. (13) and (21) in the standard boundary conditions 

.

l

f
(

0+0l

=
l

f
(

0−0l

(22) 

results in the matrix equation 

.

l

M
l

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

A1

A2

B1

B2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

0

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (23) 

where
l

M
l

. is a 4 ×.4 matrix. This equation has a nontrivial solution only if 

. det
l

M
l

= 0 , (24) 

which serves as the dispersion equation for SPP wave propagation. 

For fixed ψ ∈ (0◦, 360◦)., Eq. (24) has to be numerically solved to determine q. 

The phase speed of the SPP waves, normalized with respect to the speed of light in 

vacuum c0 ., is denoted by 

.vph =
ω

c0 Re (q)
. (25)



Optics with Tightly Interlaced Matched Ambidextrous Bilayers 289

The propagation distance 

.Aprop =
1

Im (q)
(26) 

is the distance along the direction of propagation at which the field amplitude 

reduces to a factor e−1
.. 

After finding q, [f (z)].can also be determined for all z in terms of a normalization 

constant. Results reported in the next section were obtained imposing B2 = 1. 

and calculating A1 ., A2 ., and B1 . by Eq. (23). Thereafter, ez(z). and hz(z). can 

be straightforwardly determined using the Maxwell equations. Finally, the time-

averaged Poynting vector 

.P(r) =
1

2
Re

l

E(r) × H∗(r)
l

(27) 

can be computed, with the asterisk denoting the complex conjugate. 

3.3 Numerical Results 

For all calculations, we fixed the free-space wavelength λ0 = 633. nm, and 

h = +1.. The metal was taken to be silver with relative permittivity εmet =
−14.461 + i1.1936. [19]. The periodic TIMAB was chosen to have o = 162. nm, 

εa = 6.65313+ i0.0429696., εb = 7.35561+ i0.050978., εc = 6.53285+ i0.042055. 

and χ = 50◦
., which values emerge from experiments on CSTFs [20]. 

Several solutions of the dispersion equation (24) exist. The corresponding 

normalized phase speeds, as defined in Eq. (25), are reported in the polar plot in 

Fig. 3. The radial coordinate in the polar plot represents the value of vph . while 

the angular coordinate is the angle ψ . in the xy plane indicating the direction of 

propagation of the SPP wave. For the sake of clarity, the solutions are grouped 

in branches and labeled from 1 to 13 as displayed in Fig. 3. Branches labeled l'
. 

correspond to branches l. rotated by 180◦
., l ∈ [1, 13].. 

The phase speed of the SPP waves goes from a value of 0.3. up to almost 0.6.. For  

every direction of propagation, at least three solutions can be found. Furthermore, 

there are angular ranges (highlighted gray in Fig. 3) where a multiplicity of up 

to six different SPP waves can exist for a fixed propagation direction, namely 

ψ ∈ [4◦, 8◦] ∪ [8◦, 20◦] ∪ [70◦, 76◦].. This multiplicity is very useful in sensing 

applications since multiple SPP waves can allow the simultaneous detection of 

multiple analytes. 

It is worth noting that the role of interlacing in the periodic TIMAB is 

fundamental to increase the multiplicity of SPP waves possibly guided in a specific 

direction. In fact, the number of SPP waves, which are solutions of the boundary-
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Fig. 3 Normalized phase 

speed vph . as a function of ψ . 

of SPP waves guided by the 

planar silver/TIMAB 

interface. Ranges of ψ . with 

the highest number of SPP 

waves simultaneously 

excitable are shaded gray 

Fig. 4 Propagation distance 

Aprop . as a function of ψ . of 

SPP waves guided by the 

planar silver/TIMAB 

interface. Ranges of ψ . with 

the highest number of SPP 

waves simultaneously 

excitable are shaded gray 

value problem at the silver/TIMAB interface, turns out to be significantly greater 

than the number of solutions for the silver/CSTF interface [11]. 

The propagation distance of the SPP waves, as defined in Eq. (26), is depicted in 

the polar plot of Fig. 4 for l ∈ [1, 13].. In this figure, the radial coordinate represents 

the propagation distance, which goes from a minimum of 7.09. µm up to a maximum 

of 11.22. µm for l ∈ [1, 13]..
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Fig. 5 Normalized phase 

speed vph . as a function of ψ . 

of the superluminal SPP wave 

guided by the planar 

silver/TIMAB interface 

The solutions reported in Figs. 3 and 4 are not exhaustive of all the solutions 

found. Indeed, an additional solution exists. This additional solution (i.e., l = 14.) 

is of great importance since it identifies an SPP wave with a phase speed higher 

than c0 ., thus identifying a superluminal SPP wave. The normalized phase speed is 

reported in the polar plot in Fig. 5. 

The superluminal SPP wave is the solution with the lowest propagation distance, 

Aprop . being less than 4 µm, as illustrated in Fig. 6. The angular ranges at which such 

a solution exists contains the angular ranges shaded gray in Figs. 3 and 4, where a 

multiplicity of six subluminal solutions was found, thus bringing to seven the total 

multiplicity for SPP wave propagation in these ranges. 

There are solutions in Figs. 3 and 4 with identical propagation distances, 

identified in Fig. 4 by the points where the branches 3&5., 6&7., 10&11., and 12&10'
. 

(and obviously, 3'&5'
., 6'&7'

., 10'&11'
., and 12'&10.) cross each other, and with phase 

speeds so close as to be apparently indistinguishable. SPP waves of these kinds, 

called doublets [21], are distinct SPP waves—which can be inferred by looking at 

the spatial profiles of the time-averaged Poynting vector for two SPP waves with 

the same Aprop .. To this end, the spatial profiles along the z axis of the Cartesian 

components of P. in the coordinate system
l

uprop,us,uz

l

. can be calculated for 

x = y = 0. as follows: 

.Pprop (x = 0, y = 0, z) = P (x = 0, y = 0, z) · uprop, . (28a) 

Ps (x = 0, y  = 0, z) = P (x = 0, y  = 0, z) · us, . (28b) 

Pz (x = 0, y  = 0, z) = P (x = 0, y  = 0, z) · uz . (28c)
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Fig. 6 Propagation distance 

Aprop . as a function of ψ . of 

the superluminal SPP wave 

guided by the planar 

silver/TIMAB interface 

Fig. 7 Variations of Pprop(0, 0, z). (black solid lines), Ps(0, 0, z). (blue dashed-dotted lines), and 

Pz(0, 0, z). (red dashed lines) with  z in the periodic-TIMAB half-space when ψ = 6.5◦
. and 

Aprop = 7.642045 × 10−6
.. Left: solution with vph = 0.575835.. Right: solution with vph =

0.571846. 

For instance, in Fig. 7, we present the z-variations of the components of P. for the 

two SPP waves with the same Aprop . at ψ = 6.5◦
.. Clearly, components of the SPP 

wave with the lower phase speed have a higher decay rate along the z axis in the 

periodic-TIMAB half-space. 

But this is not a general conclusion since an analysis of the superluminal solution 

reveals that the SPP wave with highest phase speed exhibits the highest decay rate 

along the z axis, as can be seen by examining Fig. 8.
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Fig. 8 Variations of 

Pprop(0, 0, z). (black solid 

lines), Ps(0, 0, z). (blue 

dashed-dotted lines), and 

Pz(0, 0, z). (red dashed lines)  

with z in the periodic-TIMAB 

half-space, for the high-phase 

speed SPP wave guided by 

the planar silver/TIMAB 

interface when ψ = 28◦
. 

Fig. 9 Schematic of the 

problem of the plane wave 

reflection and transmission by 

a TIMAB slab  

4 Polarization-Universal Bandgaps 

This section deals with the boundary-value problem of the reflection and transmis-

sion of a plane wave normally incident on a TIMAB slab. This problem was first 

solved for periodic TIMABs described by Eqs. (1b), (5a), and (5b) with finite N [7]. 

Recently, chirped TIMABs described by Eqs. (1b), (5a), and (6) with finite N were 

proposed and analyzed [12]. Both architectures were shown to exhibit polarization-

universal bandgaps. Here, the main characteristics are illustrated. 

4.1 Boundary-Value Problem 

Consider a general TIMAB slab consisting of N bilayer cells occupying the region 

0 < z < A., where A =
EN

j=1 4oj .. The half-spaces z < 0. and z > A. are vacuous. 

An arbitrarily polarized plane wave impinges normally on the TIMAB slab from the 

half-space z < 0.. The schematic of the boundary-value problem is shown in Fig. 9. 

The incident electric field phasor can be written as: 

.Ei(z) = (aLu+ + aRu−) exp (ik0z) , z < 0 , (29) 

where u± = (ux ± iuy)/
√

2., and the subscripts L and R denote the left- and 

the right-circularly polarized field components with known amplitudes aL . and aR .,
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respectively. The electric field phasor of the plane wave reflected in the half-space 

z < 0. is written as 

.Er(z) = (rRu+ + rLu−) exp (−ik0z) , z < 0 , (30) 

and the electric field phasor of the plane wave transmitted in the half-space z > A. 

is written as 

.Et(z) = (tLu+ + tRu−) exp [ik0(z − A)] , z > A , (31) 

where rL . and rR . ( tL . and tR .) are the unknown amplitudes of the components of the 

reflected (transmitted) plane wave. 

The boundary-value problem can be solved by using the transfer-matrix method, 

whose detailed description is provided elsewhere [22]. Here, we only report that the 

method leads to the 4 ×.4-matrix relation [10]: 

.[f(A+)] = [AN ] [AN−1] · · · [A2] [A1][f(0−)] , (32) 

where 

.[f(0−)] =
1

√
2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(rL + rR) + (aL + aR)

i[(−rL + rR) + (aL − aR)]

−i[(rL − rR) + (aL − aR)]/η0

−[(rL + rR) − (aL + aR)]/η0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (33a) 

.[f(A+)] =
1

√
2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

tL + tR

i(tL − tR)

−i(tL − tR)/η0

(tL + tR)/η0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (33b) 

.[Aj ] = exp
l

2ioj [Vj (−1)]
l

exp
l

2ioj [Vj (1)]
l

, (33c) 

and 

.[Vj (s)] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 −ish
π

oj

0 k0η0

ish
π

oj

0 −k0η0 0

0 −k0η
−1
0 εc 0 −ish

π

oj

k0η
−1
0 εd 0 ish

π

oj

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (33d)
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When the incidence amplitudes aL,R . are known, the reflection amplitudes rL,R . 

and the transmission amplitudes tL,R . can be obtained by solving Eq. (32). In 

particular, imposing aR = 0. and giving aL /= 0., the co- and cross-polarized 

reflectances RLL =
l

l

l

l

rL

aL

l

l

l

l

2

. and RRL =
l

l

l

l

rR

aL

l

l

l

l

2

., as well as the co- and cross-polarized 

transmittances TLL =
l

l

l

l

tL

aL

l

l

l

l

2

. and TRL =
l

l

l

l

tR

aL

l

l

l

l

2

. can be calculated. Similarly, the co-

and cross-polarized reflectances RRR =
l

l

l

l

rR

aR

l

l

l

l

2

. and RLR =
l

l

l

l

rL

aR

l

l

l

l

2

., as well as the co-

and cross-polarized transmittances TRR =
l

l

l

l

tR

aR

l

l

l

l

2

. and TLR =
l

l

l

l

tL

aR

l

l

l

l

2

. can be obtained 

after setting aR /= 0. and aL = 0.. 

4.2 Numerical Results 

All results presented here were calculated by using Ac = 1.968., Bc = −0.759 ×
10−4

., D0 = 1.9749., D1 = −0.0964 × 10−2
., and D2 = −0.7262 × 10−4

.. These 

values hold at λ0 = 633. nm for tantalum-oxide CTFs deposited with χv = 8◦
. 

[9, 14, 18]. Accordingly, we set εc = 2.125. and εd = 1.981. and ignored dispersion 

for λ0 ∈ [500, 700]. nm. 

4.2.1 Periodic-TIMAB Slab 

Spectra of co- and cross-polarized remittances of a periodic-TIMAB slab with 

h = 1., N = 50., and oj = 260. nm ∀j ∈ [1, N ]. are shown in Fig. 10 for λ0 ∈
[500, 700]. nm. The spectra of RLL . and RRR . are almost perfectly superimposable, 

as also those of TRR . and TLL ., RRL . and RLR ., as well as  TRL . and TLR .. The  

cross-polarized reflectances do not exceed 0.12. for λ0 ∈ [500, 700]. nm, while 

the cross-polarized transmittances are negligible everywhere in the same spectral 

regime. Co-polarized reflectances are very high in a narrow spectral regime, which 

is the polarization-universal Bragg regime, wherein normally incident circularly 

polarized plane waves are almost totally reflected regardless of their handedness. 

The center wavelength λPUB . of the polarization-universal Bragg regime 

increases with the half structural period o., as shown in Figs. 11 and 12, where 

the spectra of the co- and cross-polarized remittances of periodic TIMABs are 

presented for o = 250. nm and o = 270. nm, respectively. As demonstrated by 

Fig. 13, λPUB . is linearly dependent on o..
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Fig. 10 Spectra of all eight remittances of a periodic-TIMAB slab with h = 1., N = 50., and  

oj = 260. nm ∀j ∈ [1, N ].
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Fig. 11 Spectra of all eight remittances of a periodic-TIMAB slab with h = 1., N = 50., and  

oj = 250. nm ∀j ∈ [1, N ].
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Fig. 12 Spectra of all eight remittances of a periodic-TIMAB slab with h = 1., N = 50., and  

oj = 270. nm ∀j ∈ [1, N ].
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Fig. 13 Center wavelength 

λPUB . of the universal Bragg 

regime as a function of o. for 

a periodic-TIMAB slab 

(oj = o. nm ∀j ∈ [1, N ].) 

4.2.2 Linearly Chirped TIMAB Slab 

As noted in Sec. 4.2.1, the polarization-universal bandgap exhibited by a periodic 

TIMAB is very narrow. The full-width-at-half-maximum (FWHM) bandwidth of 

the co-polarized reflectances in Figs. 10, 11, and 12 is about 7 nm. 

Recently, some of us examined linearly chirped TIMAB slabs, which feature a 

polarization-universal bandgap significantly wider than the periodic-TIMAB slabs 

[12]. In those chirped TIMABs, oj . linearly increases with j ∈ [1, N ]., i.e., 

.oj = omin +
omax − omin

N − 1
(j − 1) , j ∈ [1, N ] . (34) 

As an example, spectra of the co- and cross-polarized remittances of a linearly 

chirped TIMAB with h = 1., N = 50., lower bound of the chirping range 

omin = 250. nm, and upper bound of the chirping range omax = 270. nm are shown 

in Fig. 14. The center wavelength of the bandgap is λUC = 596. nm, practically 

coinciding with the center wavelength λPUB . of the bandgap of the periodic TIMAB 

with half structural period equal to the central value of the chirping range ( o =
260. nm). The FWHM bandwidth of the co-polarized reflectance is 40 nm, more than 

five times the FWHM bandwidth of the periodic TIMAB with the same number of 

bilayer cells. However, the co-polarized reflectances (transmittances) in the bandgap 

turn out to be lower (higher) than the co-polarized reflectances (transmittances) of 

the periodic TIMAB. Similar conclusions have previously been drawn for linearly 

chirped CSTFs [18]. 

The values of RLL . (TLL .) and RRR . (TRR .) in the bandgap can be increased 

(decreased) by augmenting the number of bilayers. Spectra of the co- and cross-

polarized remittances of a linearly chirped TIMAB with the parameters same as 

for Fig. 14 but with N = 80. are shown in Fig. 15. The center wavelength of the 

bandgap did not change; but the FWHM of the co-polarized reflectances is 44 nm, 

which is slightly larger than for N = 50., while the average co-polarized reflectances 

(transmittances) in the bandgap are significantly higher (lower).
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Fig. 14 Spectra of all eight remittances of a linearly chirped TIMAB slab with h = 1., N = 50., 

omin = 250. nm, and omax = 270. nm
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Fig. 15 Spectra of all eight remittances of a linearly chirped TIMAB slab with h = 1., N = 80., 

omin = 250. nm, and omax = 270. nm
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Another way to increase (decrease) the average co-polarized reflectances (trans-

mittances) in the bandgap requires reduction of the width of the chirping range 

Ao = omax −omin .. Spectra of the co- and cross-polarized remittances of a linearly 

chirped TIMAB slab with h = 1., N = 50., and Ao = 10. nm (omin = 255. nm, 

omax = 265. nm) are shown in Fig. 16. Since the central value of the chirping 

range is 260 nm, the central wavelength of the bandgap remains unchanged. The 

average co-polarized reflectances (transmittances) are significantly higher (lower) 

than their counterparts for the chirped TIMAB slab with the Ao = 20. nm, whereas, 

as expected, the FWHM bandwidth of the bandgap is lower. 

The foregoing results allow us to conclude as follows: 

(i) periodic TIMAB slabs exhibit a narrow polarization-universal bandgap; 

(ii) linearly chirped TIMAB slabs exhibit a wider polarization-universal bandgap; 

(iii) increasing the chirping range increases the FWHM bandwidth of the bandgap 

but decreases (increases) the average co-polarized reflectances (transmittances) 

in the bandgap; and 

(iv) the average co-polarized reflectances (transmittances) in the bandgap can be 

increased (decreased) by increasing the number of bilayer cells in the TIMAB 

slab. 

5 Final Remarks 

High multiplicity of different SPP waves, including superluminal ones, can exist 

at metal/TIMAB interface for a fixed propagation direction. Indeed, comparing 

the solutions of silver/TIMAB and silver/CSTF boundary-value problems for SPP 

wave-propagation shows that the number of SPP waves that can be guided in a 

specific direction is significantly increased by interlacing in the TIMAB. Moreover, 

TIMABs exhibit a polarization-universal bandgap on axial excitation. Periodic 

TIMAB slabs feature a narrow bandgap with high reflectance. Chirped TIMAB 

slabs exhibit wider bandgap but reflect less efficiently.
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Fig. 16 Spectra of all eight remittances of a linearly chirped TIMAB slab with h = 1., N = 50., 

omin = 255. nm, and omax = 265. nm
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Analysis of Multiple Scattering by 
Cylindrical Arrays and Applications to 
Electromagnetic Shielding 

Grigorios P. Zouros , Minas Kouroublakis , and Nikolaos L. Tsitsas 

1 Introduction 

Electromagnetic (EM) scattering by finite, infinite, or periodic arrangements of infi-

nite cylinders is essential for understanding wave interactions in structured media, 

with a richness of applications such as antenna design, active ferromagnetic devices, 

tunable light transport, plasmonics, metasurfaces, metamaterials, and EM shielding. 

Various studies have collectively enhanced our understanding of EM interactions 

by such configurations, showcasing a range of analytical, numerical, and hybrid 

methods. This diverse methodological toolkit provides a robust foundation for fur-

ther research and practical applications in various fields of science and engineering. 

A pioneer investigation of wave scattering by gratings of conducting cylinders 

was performed in [11] using an integral equation method, where the reflected 

and transmitted amplitudes were calculated by utilizing the surface field on one 

element of the array. A finite-difference coupling technique was developed in [10] 

for arrays of conducting cylinders. This numerical method allowed the calculation 

of the reflected and transmitted amplitudes directly, without the need of the surface 

field computation. A point matching technique was presented in [7] for arrays of 

both conducting and dielectric cylinders, providing a broader perspective on the 

influence of the size and spacing of the elements to improve the directivity of linear 

antennas. Multiple scattering by two parallel dielectric cylinders was investigated in 

[24] via Maxwell’s equations solution with appropriate boundary conditions (BCs). 
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That work provided a detailed mathematical framework for understanding the 

interactions between closely spaced cylindrical scatterers. Müller’s scattering matrix 

method was employed in [27] for two penetrable cylinders at oblique incidence, and 

the derived formal solutions were utilized to highlight the complexities introduced 

by the oblique illumination and the penetrability of the array elements. A nonlinear 

programming approach was presented in [5] for multiple scattering by a planar array 

of parallel dielectric cylinders under normal incidence, demonstrating the damping 

of internal resonance features of the array. A Green’s function method for the 

analysis of EM wave propagation in periodic arrangements of dielectric cylinders 

was proposed in [1]. The main application concerned the accurate computation of 

modes propagating in configurations of the so-called holey fibers. A semi-analytical 

recursive formula was implemented in [9] for periodic arrays of circular cylinders. 

This method involved the calculation of the reflection and transmission matrices of a 

periodic array, and then layered structures were examined via this recursive formula. 

EM scattering from periodic arrays with defects was studied in [26] via a recursive  

transition-matrix algorithm with pseudo-periodic Fourier transform. This approach 

focused on the impact of defects within the array, providing valuable insights into 

the robustness and reliability of periodic structures. Translational symmetries and 

the discrete Fourier transform were utilized in [13] for arrays featuring axially 

magnetized parallel plasma columns, highlighting the unique scattering properties 

of gyrotropic materials, such as the sensitivity response due to slight variations of the 

external static magnetic field. A volume-integral-equation method employing entire-

domain Galerkin techniques was developed in [23] and applied for the investigation 

of reflection and refraction phenomena by layered all-dielectric gratings in the form 

of periodic rectangular cylinders. Finally, a hybrid method of auxiliary sources 

(MAS), combined with the fast multipole method, was presented in [17] and [16] to  

analyze EM scattering from large perfectly electric conducting (PEC) or dielectric 

cylindrical arrays, demonstrating a strategy to handle complex large-scale problems 

with reduced computational cost. 

Apart from the key methods employed in notable research works, numerous 

cylindrical array-based modern applications exist in fields such as active ferromag-

netic devices, tunable light transport, plasmonics, metasurfaces, metamaterials, and 

EM shielding. The design and optimization of devices that rely on ferromagnetic 

materials were examined in [14], via EM scattering from a finite number of ferro-

magnetic microwire cylinders. Toroidal dipolar excitations in cylindrical structures 

were analyzed in [4], aiming at sensing applications. Tunable light transport in dis-

ordered systems was examined in [2] by considering energy and negative asymmetry 

parameters calculations in coated magneto-optical cylindrical arrays, targeting to the 

development of advanced optical devices capable of controlling light propagation 

in complex media. The design of plasma-based devices that leverage plasmonic 

effects was investigated in [8] via a finite array of magnetized plasma cylinders 

near the frequencies of plasmon resonances. Magnetic mirrors were proposed in 

[15] by exploiting electric resonances. Reconfigurable wavefront manipulation via 

gradient metasurfaces was achieved in [22] using elliptical dielectric cylindrical 

arrays. High transmission and absorption were reported in [21] from metasurfaces
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composed of periodically corrugated cylindrical arrays, crucial for the development 

of devices with tailored EM properties. Systems of polaritonic rods for achieving 

multifunctional metamaterials were studied in [18]. The effect of gridding an EM 

shield was examined in [25]. An effective medium approach for multilayered 

cylindrical metamaterial systems was derived in [19]. The shielding effectiveness 

(SE) was examined in [12] for various metamaterial cylindrical arrays, aiming at the 

design of devices for the protection of sensitive electronic equipment from unwanted 

EM interference (EMI). 

In this work, we analyze multiple scattering of EM waves by cylindrical arrays 

using the MAS. We present the mathematical treatment concerning the application 

of MAS to conduct full wave scattering analysis by PEC, dielectric and core–shell 

PEC–dielectric rectangular arrays, using excitations such as a current filament or 

a plane wave. We also extend the application to the analysis of circular arrays. 

To highlight the robustness of the developed method, we apply the MAS to 

demonstrate EM shielding via cylindrical array EM shields (CAES). We define the 

parameter of SE as a figure of merit and show that rectangular or circular cylindrical 

arrays may be used to significantly reduce the penetrating fields and thus provide 

protection to sensitive electronic devices from EMI. The results obtained from MAS 

are compared to the ones obtained from the HFSS commercial software, and an 

agreement is met that establishes the verification of the provided method. 

Hereinafter, an exp(iωt). time dependence is assumed and suppressed, where ω . 

is the angular frequency. 

2 Multiple Scattering by PEC Arrays 

Figure 1a illustrates the geometry of a cylindrical rectangular array where each 

cylindrical element has arbitrary cross section, and the array consists of Nx . columns 

and Ny . rows, therefore Nt = NxNy . cylinders in total. The center of each cylinder 

lies at 

Fig. 1 Rectangular array of PEC cylinders. (a) Elements of arbitrary cross section. (b) Elements 

of circular cross section
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.x
(nx ,ny )
c = (nx − 1)dx − (Nx − 1)

2
dx, . (1a) 

y 
(nx ,ny ) 
c = (ny − 1)dy − 

(Ny − 1) 

2 
dy, (1b) 

where nx = 1, . . . , Nx . is the column number, ny = 1, . . . , Ny . is the row number, dx . 

is the distance between the centers of two adjacent cylinders along the x-direction 

(spatial period along the x-direction), and dy . is the distance between two adjacent 

cylinders along the y-direction (spatial period along the y-direction). 

To simplify the presentation of the MAS formulation, in what follows, we 

describe the procedure for circular elements, as illustrated in Fig. 1b. Using the 

global system of coordinates Oxy ., the coordinates of each perfectly electric 

conducting (PEC) cylinder boundary C(nx ,ny )
. are given by 

.x
(nx ,ny )

cyl = ρcyl cos φcyl + x
(nx ,ny )
c , . (2a) 

y 
(nx ,ny ) 

cyl = ρcyl sin φcyl + y 
(nx ,ny ) 
c , (2b) 

where ρcyl . is the radius and φcyl . is the polar angle of each cylinder’s local coordinate 

system O'x'y'
., as depicted in Fig. 1b. The structure is illuminated by a TMz

. 

cylindrical wave with incident wavevector kinc ., radiated from an electric current 

filament source (denoted by the red star in Fig. 1). The incident electric and magnetic 

fields for this stimulation are given by 

.Einc(r) = −k0Z0

4
IH

(2)
0 (k0|rf − r|)ẑ, . (3a) 

Hinc(r) = − ik0 

4 

(yf − y)x̂ + (x − xf )ŷ
l

lrf − r
l

l

IH  
(2) 
0 (k0

l

lrf − r
l

l), (3b) 

where r = (x, y). is the observation point, rf = (xf , yf ). is the position vector of 

the current filament, I is the constant electric current amplitude of the filament, k0 =
ω

√
ε0µ0 . is the free space wavenumber, Z0 = √

µ0/ε0 . is free space impedance, and 

H
(2)
0 . is the Hankel function of the second kind and zeroth order. 

The application of MAS on the (nx, ny). cylinder of the array is depicted in 

Fig. 1b. An auxiliary surface C
(nx ,ny )
aux . with radius ρaux < ρcyl . is defined, where 

N auxiliary sources (ASs) in the form of z-directed infinitely long electric current 

filaments, are homogeneously distributed. In this equivalent situation, the scattered 

field by each cylinder is the superposition of the fields radiated by the ASs in 

an unbounded medium filled with the surrounding medium, which in this case is 

vacuum. Thus, the total scattered field is simply the superposition of the fields 

radiated by every AS, i.e.,



Analysis of Multiple Scattering by Cylindrical Arrays 311

.Esc(r) = −k0Z0

4

Nx
7

nx=1

Ny
7

ny=1

N
7

n=1

I
(nx ,ny )
n H

(2)
0

(

k0|r − r
(nx ,ny )
aux,n |

)

ẑ, (4) 

where I
(nx ,ny )
n . is the unknown complex amplitude of the n-th AS of C

(nx , ny )
aux . and 

r
(nx ,ny )
aux,n . is the position vector of the n-th AS of C

(nx ,ny )
aux .. 

To calculate the unknown complex amplitudes I
(nx ,ny )
n . of the auxiliary currents, 

we enforce the BCs for the z-directed electric field on N collocation points (CPs) 

on each cylinder. The local coordinates of these CPs are given by 

.x
(mx ,my )

cyl = ρcyl cos

(

2π(m − 1)

N

)

+ x
(mx ,my )
c , m = 1, . . . , N, . (5a) 

y 
(mx ,my ) 

cyl = ρcyl sin

(

2π(m − 1) 

N

)

+ y 
(mx ,my ) 
c , m  = 1, . . . , N, (5b) 

with mx = 1, 2, . . . , Nx ., my = 1, 2, . . . , Ny . and m = 1, . . . , N ., so as to distinguish 

between counters pertaining to ASs and CPs. The PEC BC implies that the total 

z-directed electric field on the boundaries of every cylinder is zero. Therefore, 

from (3a) and (4), one has 

. − k0Z0

4

Nx
7

nx=1

Ny
7

ny=1

N
7

n=1

I
(nx ,ny )
n H

(2)
0 (k0|r

(mx ,my )

cyl,m − r
(nx ,ny )
aux,n |)

= −k0Z0

4
IH

(2)
0 (k0|rf − r

(mx ,my )

cyl,m |), (6) 

with mx = 1, . . . , N ., my = 1, . . . , N . and m = 1, . . . , N ., where r
(mx ,my )

cyl,m . is the 

position vector of the m-th CP of C(mx ,my )
. in the global coordinate system Oxy .. 

Equation (6) is written in the form of a linear system as follows: 

.ZI = V, (7) 

where Z. is the matrix of the linear system, I. is the unknown vector of the ASs 

current amplitudes, and V. is the excitation vector. Solving the aforementioned 

linear system, we can then compute the total electric field in any position as the 

superposition of (3a) and (4). 

For the case of the TEz
. incidence (magnetic current filament source), the 

equations of the incident cylindrical wave are given by
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.Hinc(r) = − k0

4Z0
KH

(2)
0 (k0|rf − r|)ẑ, . (8a) 

Einc(r) = 
ik0 

4 

(yf − y)x̂ + (x − xf )ŷ
l

lrf − r
l

l

KH 
(2) 
0 (k0

l

lrf − r
l

l), (8b) 

where K is the complex amplitude of the magnetic current filament. The application 

of MAS in this instance follows the same procedure as in the TMz
. case, with the 

difference that the electric ASs are replaced by magnetic ASs. Hence, the total 

scattered field is given by 

. Esc(r) = i k0

4

Nx
7

nx=1

Ny
7

ny=1

N
7

n=1

K
(nx ,ny )
n

(x − x
(nx ,ny )
aux,n )ŷ + (y

(nx ,ny )
aux,n − y)x̂

|r − r
(nx ,ny )
aux,n |

× H
(2)
1

(

k0|r − r
(nx ,ny )
aux,n |

)

ẑ, (9) 

where K
(nx ,ny )
n . is the unknown complex amplitude of the n-th AS of C

(nx ,ny )
aux .. 

Subsequently, by applying the BC of nullifying the total electric field at N CPs 

on each of the cylinders, we obtain 

. − ik0

4

Nx
7

nx=1

Ny
7

ny=1

N
7

n=1

K
(nx ,ny )
n

(

y
(nx ,ny )
aux,n − y

(mx ,my )

cyl,m

)

tx +
(

x
(mx ,my )

cyl,m − x
(nx ,ny )
aux,n

)

ty

|r(mx ,my )

cyl,m − r
(nx ,ny )
aux,n |

× H
(2)
1

(

k0|r
(mx ,my )

cyl,m − r
(nx ,ny )
aux,n |

)

= ik0

4

N
7

n=1

(yf − y
(mx ,my )

cyl,m )tx + (x
(mx ,my )

cyl,m − xf )ty
l

l

l
rf − r

(mx ,my )

cyl,m

l

l

l

KH
(2)
1

(

k0|r
(nx ,ny )

cyl,m − rf |
)

,

(10) 

where tx . is the x-component of the tangential unit vector on r
(mx ,my )

cyl,m . and ty . is the y-

component of the tangential unit vector on r
(mx ,my )

cyl,m .. Equation (10) is a linear system 

in the form of (7) with unknowns the complex amplitudes K
(nx ,ny )
n .. The solution of 

this system leads to the computation of the total field everywhere. 

The aforementioned procedure also applies to the case where the incident field is 

a TMz
. or a TEz

. plane wave. For TMz
. incidence, the incident field is expressed by 

.Einc(r) = E0e
−ik0(x cos φinc+y sin φinc)ẑ, . (11a) 

Hinc(r) = 
1 

Z0 
k̂inc(r) × Einc(r), (11b)
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where E0 . is the amplitude of the incident electric field, k̂inc . is the unit vector of 

the incident wavevector, and φinc . is the azimuth angle of incidence. The respective 

expressions of the fields for the TEz
. incidence are obtained by duality on (11). 

An important quantity of interest in scattering problems is the scattering width, 

defined by [3] 

.σ(φobs) = lim
r→∞

2πr
|Esc(r, φobs)|2
|Einc(r, φobs)|2

, (12) 

where φobs . is the azimuthal observation angle. For the case where the incident wave 

is a plane wave with unit amplitude, or a cylindrical wave from an excitation source 

with a unit current amplitude, it can be shown that (12) takes the following forms 

for TMz
. and TEz

. incidence, i.e., 

. σTM(φobs) =
k0Z

2
0

4

l

l

l

l

Nx
7

nx=1

Ny
7

ny=1

N
7

n=1

I
(nx ,ny )
n

× exp
l

ik0(x
(nx ,ny )
aux,n cos φobs + y

(nx ,ny )
aux,n sin φobs)

l

l

l

l

l

2

, . (13a) 

σTE(φobs) = 
k0 

4Z2 
0

l

l

l

l

Nx
7

nx=1 

Ny
7

ny=1 

N
7

n=1 

K 
(nx ,ny ) 
n 

× exp
l

ik0(x 
(nx ,ny ) 
aux,n cos φobs + y 

(nx ,ny ) 
aux,n sin φobs)

l

l

l

l

l

2 

. (13b) 

3 Multiple Scattering by Dielectric Arrays 

Figure 2 illustrates the geometry of a cylindrical array where each cylinder is 

circular (we use circular elements in order to simplify the formulation, although 

the methodology also supports non-circular cross sections) and dielectric, having 

permittivity ε = εrε0 . and permeability µ = µrµ0 ., where εr . and µr . are the 

respective relative values. The various quantities (e.g., the number of cylinders and 

the spatial periods) are defined similarly as those in Fig. 1. 

For the application of MAS for the (nx, ny). cylinder, two auxiliary surfaces 

C
1,(nx ,ny )
aux . and C

2,(nx ,ny )
aux . are defined with radii ρ

1,(nx ,ny )
aux . and ρ

2,(nx ,ny )
aux ., respectively. 

In each surface, a set of N ASs are homogeneously distributed. The scattered 

field by each cylinder is the superposition of the fields radiated by the sources 

of C
1,(nx ,ny )
aux ., while the internal field is the superposition of the fields radiated by 

the sources of C
2,(nx ,ny )
aux .. The total scattered electric and magnetic fields equal the
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Fig. 2 Rectangular array of 

circular dielectric cylinders 

superposition of the corresponding fields radiated by the sources of all the C
1,(nx ,ny )
aux . 

auxiliary surfaces. Thus, the scattered electric and magnetic fields are expressed by 

.Esc(r) = −k0Z0

4

Nx
7

nx=1

Ny
7

ny=1

N
7

n=1

I
1,(nx ,ny )
n H

(2)
0 (k0|r − r

1,(nx ,ny )
aux,n |)ẑ, . (14a) 

Hsc(r) = −i 
k0 

4 

Nx
7

nx=1 

Ny
7

ny=1 

N
7

n=1 

I 
1,(nx ,ny ) 
n 

(x − x 
1,(nx ,ny ) 
aux,n )ŷ + (y 

1,(nx ,ny ) 
aux,n − y)x̂ 

|r − r 
1,(nx ,ny ) 
aux,n | 

× H 
(2) 
1 (k0|r − r 

1,(nx ,ny ) 
aux,n |), (14b) 

where I
1,(nx ,ny )
n . is the complex amplitude of the n-th AS in C

1,(nx ,ny )
aux ., r

1,(nx ,ny )
aux,n =

(x
1,(nx ,ny )
aux,n , y

1,(nx ,ny )
aux,n ). is the position vector of the n-th AS on C

1,(nx ,ny )
aux . in the 

global cooridnate system Oxy ., ŷ. is the unit vector along the y-direction of the global 

coordinate system, x̂. is the unit vector along the x-direction of the global coordinate 

system, and H
(2)
1 . is the Hankel function of the second kind and first order. The 

internal field in each cylinder is the superposition of fields radiated by the sources 

of C
2,(nx ,ny )
aux . in an unbounded medium filled with the dielectric material ( ε ., µ.), thus 

it is given by 

.E
(nx ,ny )

in (r) = −kZ

4

N
7

n=1

I
2,(nx ,ny )
n H

(2)
0 (k|r − r

2,(nx ,ny )
aux,n |)ẑ, . (15a) 

H 
(nx ,ny ) 

in (r) = i 
k 

4 

N
7

n=1 

I 
2,(nx ,ny ) 
n 

(x − x 
2,(nx ,ny ) 
aux,n )ŷ + (y 

2,(nx ,ny ) 
aux,n − y)x̂ 

|r − r 
2,(nx ,ny ) 
aux,n | 

× H 
(2) 
1 (k|r − r 

2,(nx ,ny ) 
aux,n |), (15b)
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where k = ω
√

εµ. is the wavenumber in the dielectric material, Z = √
µ/ε . is the 

dielectric material’s wave impedance, I
2,(nx ,ny )
n . is the complex amplitude of the n-th 

AS of C
2,(nx ,ny )
aux ., and r

2,(nx ,ny )
aux,n = (x

2,(nx ,ny )
aux,n , y

2,(nx ,ny )
aux,n ). is the position vector of the 

n-th AS of C
2,(nx ,ny )
aux . in the global coordinate system Oxy .. 

To calculate the unknown complex amplitudes I
1,(nx ,ny )
n . and I

2,(nx ,ny )
n ., we apply 

the continuity BCs for the tangential electric and magnetic fields at N CPs of each 

dielectric boundary C(nx ,ny )
.. For the case of a TMz

. cylindrical wave excitation 

(electric current filament source), cumbersome manipulations yield 

. − k0Z0
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4
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cyl,m |), . (16a) 
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(
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ik0 
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(yf − y 
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)tx + (x 
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− xf )ty
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IH  
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1
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k0|r 
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cyl,m 
− rf |

)

, (16b) 

where mx = 1, . . . , Nx ., my = 1, . . . , Ny ., m = 1, . . . , N ., while r
(mx ,my )

cyl,m =
(x

(mx ,my )

cyl ,. y
(mx ,my )

cyl ). is the position vector of the m-th CP on C(mx ,my )
., tx . is the x 

component of the tangential unit vector on r
(mx ,my )

cyl,m ., and ty . is the y component of the 

tangential unit vector on r
(mx ,my )

cyl,m .. Equation (16) is a linear system of the form of (7) 

with unknowns the 2NNxNy . auxiliary current amplitudes. Once it is solved, the 

total fields are computed everywhere using (3) and (14) for the background region 

and (15) for the regions inside the dielectric elements.
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For the case of a TEz
. cylindrical wave excitation (magnetic current filament 

source), the respective linear system (16) is obtained by duality. 

Lastly, the scattering width is given by (13) with I
(nx ,ny )
n . and K

(nx ,ny )
n . replaced 

by I
1,(nx ,ny )
n . and K

1,(nx ,ny )
n ., respectively. 

4 Multiple Scattering by Core–Shell PEC–Dielectric Arrays 

Figure 3 illustrates the geometry of a cylindrical array where each cylinder has 

a circular PEC core, coated by a circular dielectric shell with permittivity ε =
εrε0 . and permeability µ = µrµ0 .. The methodology also supports non-circular 

core–shell cross sections; however, we focus the presentation on circular ones for 

simplicity. 

The MAS configuration for a single core–shell cylinder is illustrated in Fig. 3. 

The internal radius is ρ1
cyl ., and the external radius is ρ2

cyl ., corresponding to the 

boundaries C1,(mx ,my )
. and C2,(mx ,my )

., respectively. We define the three auxiliary 

surfaces C
1,(nx ,ny )
aux ., C

2,(nx ,ny )
aux .and C

3,(nx ,ny )
aux .with respective radii ρ1

aux ., ρ2
aux .and ρ3

aux .. 

The field in the dielectric shell is the superposition of the fields radiated by the N 

ASs, which are homogeneously distributed on C
1,(nx ,ny )
aux . and C

2,(nx ,ny )
aux ., while the 

scattered field is the superposition of the fields radiated by the sources of C
3,(nx ,ny )
aux .. 

Thus, the internal fields in each shell are expressed by 

. E
(nx ,ny )

in (r) = −kZ

4

N
7

n=1

l

I
1,(nx ,ny )
n H

(2)
0 (k|r − r

1,(nx ,ny )
aux,n |)

+ I
2,(nx ,ny )
n H

(2)
0 (k|r − r

2,(nx ,ny )
aux,n |)

l

ẑ, . (17a) 

Fig. 3 Rectangular array of 

circular core–shell 

PEC–dielectric cylinders
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H 
(nx ,ny ) 

in (r) = − ik 
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In addition, the scattered fields are given by 

.Esc(r) = −k0Z0
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where I
3,(nx ,ny )
n . and r

3,(nx ,ny )
aux,n . is the complex amplitude and the position vector, 

respectively, of the n-th AS of C
3,(nx ,ny )
aux .. 

Next, we apply the BCs at N CPs of C1,(mx ,my )
.and C2,(mx ,my )

., i.e., the continuity 

of the tangential electric and magnetic field on C2,(mx ,my )
., and the zeroing of the 

tangential electric field on C1,(mx ,my )
.. For the case of a TMz

. cylindrical wave 

excitation (electric current filament source), this procedure leads to 

. 

N
7

n=1

I
2,(nx ,ny )
n H

(2)
0 (k|r1,(mx ,my )

cyl,m − r
2,(nx ,ny )
aux,n |)

= −
N

7

n=1

I
1,(nx ,ny )
n H

(2)
0 (k|r1,(mx ,my )

cyl,m − r
1,(nx ,ny )
aux,n |), . (19a) 

− k0Z0 

Nx
7

nx=1 

Ny
7

ny=1 

N
7

n=1 

I 
3,(nx ,ny ) 
n H 

(2) 
0 (k|r 

1,(mx ,my ) 

cyl,m 
− r 

3,(nx ,ny ) 
aux,n |) 

+ kZ 

N
7

n=1 

I 
2,(nx ,ny ) 
n H 

(2) 
0 (k|r 

1,(mx ,my ) 

cyl,m 
− r 

2,(nx ,ny ) 
aux,n |)



318 G. P. Zouros et al.
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(19c) 

The linear system (19) is in the form of (7) with unknowns the complex amplitudes 

of the ASs. Its solution enables the calculation of the total fields everywhere. 

For the case of a TEz
. cylindrical wave excitation (magnetic current filament 

source), the BC on the PEC boundary C1,(mx ,my )
. (i.e., null tangential electric field), 

is expressed as 
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while the BCs on C2,(mx ,my )
. are the dual of (19b) and (19c). 

The scattering width is given by (13) with I
(nx ,ny )
n . and K

(nx ,ny )
n . replaced by 

I
3,(nx ,ny )
n . and K

3,(nx ,ny )
n ., respectively. 

5 Multiple Scattering by Circular Arrays 

Figure 4a illustrates the geometry of a circular cylindrical array where each cylin-

drical element has arbitrary cross section. This array consists of Nρ . circumferences 

where each circumference has Nφ . cylinders, therefore Nt = NρNφ . cylinders in 

total. The center of each cylinder is positioned at 

.x
(nρ ,nφ)
c = anρ cos

(

2π(nφ − 1)

Nφ

)

, . (21a) 

y 
(nρ ,nφ) 
c = anρ 

sin

(

2π(nφ − 1) 

Nφ

)

, (21b) 

where nρ = 1, . . . , Nρ . is the circumference number, nφ = 1, . . . , Nφ . is the number 

of the cylinder on a circumference, and anρ . is the radius of the nρ .-th circumference. 

5.1 Circular PEC Arrays 

To calculate the total fields, we follow the same procedure discussed in Sec. 2 with 

the difference that in (4)–(6), nx ., ny ., mx ., my ., Nx . and Ny . are replaced by nρ ., nφ ., mρ ., 

mφ ., Nρ ., and Nφ ., respectively. As in the rectangular geometry, mρ = 1, 2, . . . , Nρ . 

Fig. 4 Circular array of cylinders. Each cylindrical element can be PEC, dielectric, or core–shell 

PEC–dielectric. (a) Elements of arbitrary cross section. (b) Elements of circular cross section
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and mφ = 1, 2, . . . , Nφ . in order to distinguish between counters pertaining to ASs 

and CPs. 

5.2 Circular Dielectric and Core–Shell PEC–Dielectric Arrays 

To calculate the total fields, we follow the same procedures discussed in Secs. 3 

and 4 with the difference that in all equations, nx ., ny ., mx ., my ., Nx ., and Ny . are 

replaced by nρ ., nφ ., mρ ., mφ ., Nρ ., and Nφ ., respectively. 

6 Applications on EM Shielding 

One potential application constitutes the CAES for achieving EM shielding. A 

rectangular array acts as an EM shielding device if the semi-infinite region x > 0. 

in Fig. 1a is shielded from the impinging excitation existing in region x < 0.. To  

evaluate a rectangular array as a CAES, we compute the so-called SE [6], in dB, by 

.SE = −20 log10

|Etot(r)|
|Einc(r)|

, (22) 

where Etot(r). is the total electric field in region x > 0. of Fig. 1a. The evaluation of 

SE may be performed at any point r. in region x > 0.; however, in the calculations 

that follow, we define such a point on the positive x-axis. 

Compared to traditional shields, such as thick metallic slabs, CAES include 

various advantages, such as light weightiness, optical transparency, and frequency 

selectivity. Light weightiness can be particularly significant if the EM shield is used 

in airplanes or drones to facilitate flight. The same applies to portable electronic 

devices such as mobile phones or laptops. Optical transparency is a particularly 

important property if optical contact with the protected device or setup is required. 

Finally, frequency selectivity allows for a selective passage of specific frequency 

bands. 

A drawback of CAES is their limited protection to a single polarization, either 

TMz
. or TEz

.. This limitation can be mitigated by positioning a second array adjacent 

and perpendicular to the initial one. For a comprehensive understanding, a realistic 

scenario illustrating the utilization of CAES includes a manufacturing plant where 

a precision electronic control unit (ECU) is responsible for controlling critical 

processes, as shown in Fig. 5. This ECU is susceptible EMI from nearby machinery, 

which could lead to malfunctions and production errors. To ensure the reliable 

operation of the ECU, a cylindrical array embedded in the wall can be employed 

as an EM shield against TMz
. radiation. To mitigate the impact of TEz

. radiation, an 

additional cylindrical array can be positioned adjacent to the initial array, aligning 

the cylinders along the y-axis, as illustrated in Fig. 5a. If optical contact with the



Analysis of Multiple Scattering by Cylindrical Arrays 321

Fig. 5 The application of a double cylindrical array against both TMz
. and TEz

. incident waves. 

The black dots represent the cylinders on the z-direction, and the black lines the cylinders on the 

y-direction. (a) Single wall. (b) Metacage 

ECU is required, a wall made of transparent material such as glass or polycarbonate 

material is used. 

If wireless communication between the ECU and devices in other rooms within 

a particular frequency range is required, a dielectric or a PEC–dielectric array 

could be employed. This would enable a pass-band within this frequency range 

while maintaining high SE values outside of it. Lastly, if the ECU is susceptible to 

interference from all directions, then it can be protected by a metacage, illustrated 

in Fig. 5b, which means placing cylindrical arrays on all walls surrounding the 

ECU. Applying the same principles, we can utilize cylindrical arrays to protect 

the avionics of an aircraft or, on a smaller scale, the EMI-sensitive electronic 

components of a mobile phone or a laptop. 

The optimization of a cylindrical array, as, e.g., to maximize the SE or other 

figures of merit, poses significant complexities because the quantities of interest 

depend on a large number of parameters, such as the radius of the PEC or dielectric 

cylinders or the radii of the core–shell PEC–dielectric configurations. Another 

parameter is the number of cylinders, which, for the rectangular arrays, is related 

to the column numbers Nx . and the row numbers Ny ., while for the circular arrays 

with the circumference number Nρ . and cylinders per circumference Nφ .. In addition, 

the spatial period dx . along the x-direction and the spatial period dy . along the y-

direction for a rectangular array, as well as the circumference radius anρ . for a 

circular array, also add to the complexity of the optimization. Other parameters that 

complicate the optimization is the shape of the cylinders’ cross section, the mixture 

of cylinders with different sizes and shapes, and how they are arranged (alternative 

array geometries). All these factors show that thoroughly optimizing such setups 

requires running many simulations to reach a reliable conclusion.
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Fig. 6 SE versus f for 

different values of radius ρcyl . 

of a rectangular PEC array. 

Solid curves: MAS. Red 

squares: HFSS 

Fig. 7 SE versus f for 

different values of radius ρcyl . 

of a rectangular dielectric 

array. Solid curves: MAS. 

Red squares: HFSS 

Fig. 8 SE versus f for 

different values of core radius 

ρ1
cyl . of a rectangular 

core–shell PEC–dielectric 

array. Solid curves: MAS. 

Green squares: HFSS 

6.1 Shielding via Rectangular Arrays 

In what follows, we calculate SE versus operating frequencies f in the range 

from 100 MHz to 12 GHz from an electric current filament source and discuss 

the response of PEC, dielectric, and PEC–dielectric rectangular arrays as CAES, 

by changing some of the various key parameters discussed earlier. The respective 

relative values for the permittivity and permeability employed for the calculations 

in both the dielectric and the PEC–dielectric arrays, are εr = 600. and µr = 1.. 

In Figs. 6, 7, and 8, we investigate how the radius of cylinders affects SE for PEC, 

dielectric and PEC–dielectric arrays. For the PEC and dielectric arrays we vary ρcyl . 

by setting the values ρcyl = 0.7 mm., ρcyl = 1 mm. and ρcyl = 1.3 mm.. For the  

PEC–dielectric setup, the inner radius is varied as ρ1
cyl = 0.4 mm., ρ1

cyl = 0.5 mm. 

and ρ1
cyl = 0.7 mm., while the outer radius is kept constant at ρ2

cyl = 1 mm.. This
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Fig. 9 SE versus f for 

different number of columns 

Nx . of a rectangular PEC array 

effectively changes the thickness of the dielectric coating of the cylinders. The 

remaining values of parameters are Nx = 4., Ny = 18., and dx = dy = 5 mm.. 

From these results we draw the following conclusions. Regarding the PEC array 

in Fig. 6, the reduction of ρcyl . leads to a decrease in SE. Similarly, the increase 

of ρcyl . yields an increment in SE. Concerning the dielectric array in Fig. 7, in  

addition to the decrement or increment of SE, changing the radius also affects the 

frequency ranges where the array behaves as an effective negative permittivity or 

double negative (negative in both permittivity and permeability) metamaterial [20] 

or as a double positive material [3]. This observation is expected as the cylinders 

resonate at different frequencies for different radii. Finally, regarding the PEC– 

dielectric configurations in Fig. 8, pass-band frequency windows exist where the SE 

acquires small values. This equivalently means that the radiation passes through the 

array from region x < 0. to region x > 0. without strong reduction. From the plots 

of Fig. 8, we observe that a thicker dielectric coating moves the pass-band to lower 

frequencies. Similarly, a thinner coating moves the pass-band to higher frequencies. 

Therefore, the pass-band window can be shifted by changing the thickness of the 

dielectric shell. 

The results in Figs. 6, 7, and 8, which are depicted by solid curves, were obtained 

by the developed MAS numerical scheme. To validate the correctness of the MAS 

scheme, we employ the finite–element method (FEM) of the HFSS commercial 

software, and we demonstrate validity for a selected number of examples. In 

particular, the simulations in HFSS are obtained by applying a frequency sweep 

with a step of 1 GHz. The results are depicted using red squares in Figs. 6 and 7 for 

the ρcyl = 0.7. mm case and using green squares in Fig. 8 for the ρ1
cyl = 0.4. mm 

case. As evident, the agreement between the MAS and the HFSS is very good, thus 

providing a convincing validation test. 

In Figs. 9, 10, and 11, we investigate how the number of cylinders affects SE by 

varying Nx . from Nx = 3. to Nx = 5.. The study is carried out for PEC, dielectric, 

and PEC–dielectric arrays. The values of parameters used are ρcyl = 1 mm., ρ1
cyl =

0.7 mm., ρ2
cyl = 1 mm., Ny = 18., and dx = dy = 5 mm.. From these plots, we deduce 

that, when the number of cylinders is decreased, SE also decreases. Yet, when Nx . 

increases, SE also increases. This is expected because reducing for instance Nx ., the  

equivalent thickness of the array decreases.
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Fig. 10 SE versus f for 

different number of columns 

Nx . of a rectangular dielectric 

array 

Fig. 11 SE versus f for 

different number of columns 

Nx . of a rectangular core–shell 

PEC–dielectric array 

Fig. 12 SE versus f for 

different values of spatial 

periods dx . and dy . of a 

rectangular PEC array 

Fig. 13 SE versus f for 

different values of spatial 

periods dx . and dy . of a 

rectangular dielectric array 

In Figs. 12, 13, and 14, we explore the dependence of SE on the spatial periods dx . 

and dy . for three scenarios: by solely increasing dx . while keeping dy . unchanged, by 

solely increasing dy . while keeping dx . unchanged, and by simultaneously increasing 

dx . and dy .. These scenarios are investigated for all PEC, dielectric, and PEC–
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Fig. 14 SE versus f for 

different values of spatial 

periods dx . and dy . of a 

rectangular core–shell 

PEC–dielectric array 

dielectric configurations. When dx . is solely increased from 5 mm. to 10 mm. and dy . 

is fixed at 5 mm., we notice a substantial increase in SE across the entire frequency 

range. This result indicates that the homogenization of the cylindrical array is not 

affected significantly by this increase in dx ., at least for frequencies up to 12 GHz.. 

Hence, the large increase of the SE is attributed to the increase of the equivalent 

thickness of the array. When dy . is solely increased from 5 mm. to 10 mm. and dx . 

is fixed at 5 mm., we observe a substantial increase in SE up to a certain frequency 

for all configurations. Beyond this frequency limit, there is a sharp decline in SE. A 

qualitative rationale for the increase of the SE is that, as dy . increases, the diffracted 

field on the testing point (point r. in (22)) is reduced since it is further away from the 

edges of the partial shield. Regarding the sharp decrease in SE at lower frequencies, 

it can be attributed to the phenomenon where an increase in the distance dy . between 

cylinders, leads to a reduction in the maximum frequency at which the incident wave 

perceives the cylindrical array as a homogeneous entity. Finally, when dx . and dy . are 

simultaneously increased from 5 mm. to 10 mm., we notice a substantial increase in 

SE up to a certain frequency, somewhat higher than in the previous case. Beyond 

this frequency, there is a sharp decline in SE. The explanation for this result is the 

same as that provided for the previous case. 

6.2 Shielding via Circular Arrays 

As a final demonstration on EM shielding, we examine the use of circular arrays as 

CAES. In this case, the purpose of the circular array is to shield the internal region 

(region ρ < a1 . in Fig. 4a or b) from sources located in the external region (region 

ρ > a2 . in Fig. 4a or b). The opposite, i.e., to shield the external region from sources 

located in the internal region, is also applicable. 

For this application, we employ a circular PEC array in a vacuum environment 

using Nρ = 2., Nφ = 60., a1 = 6 cm., and a2 = 6.5 cm.. We consider that the whole 

configuration is exposed to a TMz
. plane wave traveling towards the − x .-direction 

in the external region ρ > a2 . of Fig. 4b, with an incident electric field given by 

.Einc(r) = E0 exp(ik0x)ẑ, (23)
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Fig. 15 SE versus f of a 

circular PEC array. Solid 

curves: MAS. Blue squares: 

HFSS 

with E0 = 1 V/m.. By employing MAS, we determine the SE. shown in Fig. 15. As  

evident, the MAS is in agreement with HFSS, thus establishing the correctness of 

the result. It is apparent that SE. is notably elevated at low frequencies. Moreover, 

at specific frequencies, resonances can be observed at which the SE is profoundly 

reduced. 

7 Conclusions and Prospects 

We conducted a comprehensive study on the analysis of multiple scattering of 

EM waves by arrays of infinite cylinders using the MAS. Our analysis encom-

passed various cylindrical configurations, including PEC, dielectric, and core–shell 

PEC–dielectric rectangular arrays, as well as circular arrays. The robustness and 

versatility of MAS were demonstrated through detailed mathematical treatments 

and practical applications, particularly in the context of EM shielding. Our findings 

indicate that MAS is a highly effective method for analyzing multiple EM scattering 

in complex cylindrical arrays. The ability to handle different types of materials and 

array geometries makes MAS a powerful tool for investigating wave interactions 

in structured media. We have shown that both rectangular and circular cylindrical 

arrays can significantly reduce penetrating EM fields, providing effective shielding 

solutions for protecting sensitive electronic devices from EMI. The comparison of 

MAS results with those obtained from the HFSS commercial software confirmed 

the accuracy and reliability of our analysis. The insights gained from this work offer 

practical guidance for designing advanced EM devices and systems. Applications 

in antenna design, active ferromagnetic devices, tunable light transport, plasmonics, 

metasurfaces, metamaterials, and EM shielding, highlight the broad relevance of the 

presented analysis. 

Looking forward, several promising avenues for future research emerge from this 

study, including further exploration of MAS for more complex configurations, such 

as irregular or anisotropic cylindrical arrays, and the inclusion of novel materials 

including metamaterials or hyperbolic media that could open new possibilities for 

wave manipulation and control. In addition, integrating MAS with optimization
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algorithms to design cylindrical arrays with tailored scattering properties for specific 

applications, could enhance the performance of various devices such as antennas, 

filters, and cloaking systems. 
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Static Bragg-Less and Dynamic 

Bragg-Like Resonances 

Martin W. McCall and Stefanos Fr. Koufidis 

1 These Are Not the Usual Bragg Gratings 

An honest discussion initiates with a straightforward question: is there anything 

new to be said about Bragg gratings in 2025? Well, concerning gratings, as  

conventionally defined and commonly understood, probably not. But regarding 

Bragg resonances, perhaps there is a story worth telling. In this chapter, we attempt 

to take the reader through some novel Bragg-type resonances occurring in static and 

dynamic mediums that have kept us off the streets in recent years. 

Scalar coupled-wave theory, a remarkably simple yet quite powerful tool, will be 

a key approach in most of our derivations, even when exact analytic solutions are 

attainable. The reasoning is simple: its simplicity. Indeed, such a theory may only 

apply under corresponding preconditions, but nonetheless, it yields simple formulae 

and, therefore, straightforward insights into various physical mechanisms. Hence, 

in Sect. 2, we take a fresh look into coupled-wave equations by leveraging some 

underlying group-theory symmetries of the differential equation system, which 

naturally guide us to the so-calledMöbius transformation. As we showed in [1], such 

a transformation reduces the coupled system to a first-order nonlinear differential 

equation of a single real variable that encodes all relevant spectral information. By 

exploiting some fundamental geometric properties of the (rather extended) family 

of conformal mappings, one can obtain the optical response of arbitrarily complex 

structures, insofar as they can be accurately described via coupled-wave theory. An 

interesting connection with coupled-oscillator theory will be briefly discussed, and 

some alternative definitions of the Bragg zone in reciprocal space will be given. 

M. W. McCall (✉) · S. F. Koufidis 

Department of Physics, Imperial College of Science, Technology and Medicine, London, UK 

e-mail: m.mccall@imperial.ac.uk; steven.koufidis20@imperial.ac.uk 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 

F. Chiadini, V. Fiumara (eds.), More Adventures in Contemporary Electromagnetic 

Theory, https://doi.org/10.1007/978-3-031-83131-7_14

329

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-83131-7protect T1	extunderscore 14&domain=pdf

 885
56845 a 885 56845 a
 
mailto:m.mccall@imperial.ac.uk
mailto:m.mccall@imperial.ac.uk
mailto:m.mccall@imperial.ac.uk
mailto:m.mccall@imperial.ac.uk

 11107
56845 a 11107 56845 a
 
mailto:steven.koufidis20@imperial.ac.uk
mailto:steven.koufidis20@imperial.ac.uk
mailto:steven.koufidis20@imperial.ac.uk
mailto:steven.koufidis20@imperial.ac.uk
https://doi.org/10.1007/978-3-031-83131-7_14
https://doi.org/10.1007/978-3-031-83131-7_14
https://doi.org/10.1007/978-3-031-83131-7_14
https://doi.org/10.1007/978-3-031-83131-7_14
https://doi.org/10.1007/978-3-031-83131-7_14
https://doi.org/10.1007/978-3-031-83131-7_14
https://doi.org/10.1007/978-3-031-83131-7_14
https://doi.org/10.1007/978-3-031-83131-7_14
https://doi.org/10.1007/978-3-031-83131-7_14
https://doi.org/10.1007/978-3-031-83131-7_14
https://doi.org/10.1007/978-3-031-83131-7_14


330 M. W. McCall and S. F. Koufidis

Advancing to more physics-pertinent situations, in Sect. 3, we explore an opti-

cally active structurally chiral medium. As is well-known, structurally chiral 

mediums exhibit the circular Bragg phenomenon, whereby a circular state is 

strongly backscattered when its handedness coincides with that of the medium, 

while the orthogonal polarization gets transmitted. By infiltrating the structurally 

chiral medium with a chiral fluid, Ref. [2] numerically showed that these Bragg 

resonances are shifted linearly with the chirality parameter, which also affects 

their peaks and corresponding bandwidths. Remarkably, as we derive in [3], when 

the chirality exceeds the value of the medium’s average refractive index, then an 

additional resonance occurs that backscatters contra-handed light. Hence, a right-

handed medium shall reflect both right- and left-handed circular polarizations 

(referred to hereafter as RCP and LCP, respectively). Additionally, there exists 

a regime, situated between the two resonances, wherein optical activity precisely 

counteracts structural chirality, effectively “unwrapping” the medium. Therein, the 

medium behaves as being purely linearly birefringent, with modes being at once 

orthogonal and co-handed with the structural scaffold. 

In Sect. 4, we discuss the Bragg-less Bragg grating we introduced in [4] by  

explicitly demonstrating how a Bragg-like response arises in a uniform medium 

without necessitating any kind of refractive index modulation. Instead of wavelength 

matching, the Bragg condition is stated as a simple parameter tuning. When a 

medium is simultaneously linearly and circularly birefringent, the chiral circularly 

polarized eigenstates of pure circular birefringence, propagating at a particular 

speed, synchronously and alternately sample the co-propagating birefringent eige-

naxes of pure linear birefringence, provided that the chirality parameter matches 

the medium’s average refractive index. This periodic sampling gives rise to a 

polarization-selective Bragg-like resonance, accessible via meta-mediums possess-

ing extreme optical rotation powers. Furthermore, as we elaborated in [5], if the 

optical axis forms an angle with the direction of wave propagation, this additional 

degree of freedom offers the possibility of relaxing the aforementioned tuning 

condition, thus leading to an experimental implementation that does not necessitate 

(very!) giant chirality. Additionally, for a particular inclination angle, infinite values 

of the refractive indices are achieved, closely resembling but fundamentally distinct 

to the singularities discovered by Weiglhofer [6, 7]. 

Leaving aside the aforesaid static mediums, in Sect. 5, we examine what happens 

when the permittivity of a conventional Bragg grating is modulated in time in 

lieu of space. It turns out that in such a temporal analog of a Bragg grating, 

similar bandgaps are formed. However, by contrast to their static counterparts, 

these gaps are formed in momentum space, highlighting the underlying physical 

mechanism of global time modulation: with no broken translational invariance in 

space, momentum is conserved while energy is not. Hence, these momentum gaps 

correspond to regimes wherein parametric amplification ensues. Equipped with the 

rather advanced tool of the Möbius method of Sect. 2, we prove the energy pseudo-

conservation relation of Ref. [8], while discussing three illustrative examples of 

nontrivial temporal modulation: linear chirping, apodization, and phase delineation.
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Our contribution concludes with the discussion of the temporal analog of optical 

activity [9]. In particular, Sect. 6 investigates light propagation in a medium whose 

permittivity, permeability, and chirality are periodic functions of time. As detailed in 

[10], unlike static mediums, this dynamic medium only couples co-handed counter-

propagating waves. When the impedance varies, two momentum gaps are formed in 

the Brillouin diagram, leading to parametric amplification with different factors for 

right- and left-handed modes. Chirality offers control over the centers of the reso-

nances, their associated bandwidths, and their corresponding amplification factors 

for each handedness, distinctively but not independently. Analytical derivation of 

the scattering coefficients for a finite time slab of the medium reveals how extreme 

optical rotation values enable a temporal version of Pendry’s chiral route to negative 

refraction [11]. At its highest point, the study unravels how elliptical polarizations 

can alter the field orientation upon transmission through a temporal slab while the 

wave gets, concurrently, parametrically amplified. 

2 Geometrical Aspects of Coupled-Wave Theory 

Let us start by assuming an archetypal photonic structure, a Bragg grating (cf. 

Fig. 1), without, however, making any assumptions on whether the profile of its 

index modulation is uniform or not. Within the context of scalar coupled-wave 

theory, an incident forward propagating wave, with an amplitude A+
., will generate 

a backward propagating one, with an amplitude A−
.. The interaction of these two 

waves is modeled by the system [12] 

.
d

dz

(

A+

A−

)

=
(

0 iκe−iϕ(z)

−iκeiϕ(z) 0

)(

A+

A−

)

, (1) 

where the phase term and the coupling coefficient are defined as 

.ϕ(z) =
( z

0

o(z')dz' and κ ≈ π
δn̄

λ0
, (2) 

z=0 z=L 

A+(z=0) A+(z=L) 

A-(z=L)A-(z=0)

A

Fig. 1 A Bragg grating lying between z = 0. and z = L.. For an aperiodic grating A = A(z).
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Fig. 2 Exemplary optical 

spectrum of a uniform Bragg 

grating: increasing the 

grating’s length L yields 

steeper curves, while 

increasing the depth of the 

refractive index modulation 

δn.widens the Bragg zone 

respectively. Here, o(z) = 2n̄k0 − K(z). accounts for the grating’s spatial 

modulation profile, where n̄. is the average refractive index, k0 . is the free-space 

wavenumber, and K(z). is the local spatial frequency. Additionally, δn. denotes the 

depth of modulation, assumed to be weak for the current purposes, i.e., δn << 1., and 

λ0 . is the design wavelength. In uniform gratings, K ≡ K0 = 2π/A., where A. is the 

pitch; a typical optical response of a uniform Bragg grating is illustrated in Fig. 2. 

A pitfall for the unwary is to assume that the general solution to Eq. (1) takes 

the matrix exponential form. This holds true only on-resonance, i.e., when ϕ = 0., 

where the vectorial-differential equation has constant coefficients. In fact, a system 

with constant coefficients occurs upon rotating the amplitudes as per Ã+ = eiϕ/2A+
. 

and Ã− = e−iϕ/2A−
.—see, e.g., Ref. [13]. Otherwise, since the characteristic 

matrix does not commute with its integral at every point of its domain of definition, 

employing the exponential matrix algorithm leads to incorrect results. Such an 

algorithm can only be used as an approximation in the limiting cases of short 

gratings and very weak index modulations; of course, “shortness” pertains to the 

wavelength and “weakness” to the ratio δn/n̄.. 

For a grating that extends between z = 0. and z = L., the solution to Eq. (1) can 

be cast in terms of a transfer matrix, S(z)., such that A(z) = S(z)A(0).. It follows 

that 

.
dS

dz
= M · S , (3) 

with M. being the matrix on the right-hand side of Eq. (1). Two apparent symmetries 

offer insights into the structure of the system’s transfer matrix. Firstly, M. being 

traceless implies that the determinant of S. is constant as per Liouville’s formula. 

For S(0) = I., this determinant is unity, irrespective of whether the system has gain 

or dissipation. We stress, however, that this does not provide conclusions about the 

system’s reciprocity. Secondly, for real system parameters, M. is also Hermitian and 

anti-diagonal. Therefore, it is straightforward to show that S† · J · S = J., with 

J = diag(1,−1)., which expresses flux conservation. 

Energy conservation and time-reversal invariance (N.B.— the latter is equivalent 

to reciprocity in energy-conserving systems—see Byrnes and Foreman’s Ref. [14]),
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ensure that S ∈ SU(1, 1).. The SU(1, 1). special unitary group has a well-known 

representation, viz., 

.S =
(

P Q

Q∗ P ∗

)

, with |P |2 − |Q|2 = 1 . (4) 

Upon careful inspection of the matrix in Eq. (4), one can see that there is a “natural” 

conformal mapping between the unit disk (including its boundary) onto itself, 

achieved via the Möbius transformation w : SU(1, 1) → C.: 

.S =
(

P Q

Q∗ P ∗

)

−→ w(z) = Pw0 + Q

Q∗w0 + P ∗ , w,w0 ∈ C , (5) 

which maps the unit diskD = {|w0| ≤ 1, w0 ∈ C}. conformally onto itself. 

Combining Eqs. (3)–(5), the introduced variable w, akin to the local conductance, 

evolves according to the Riccati equation 

.
dw

dz
= iκ

)

e−iϕ(z) + eiϕ(z)w2(z)
(

. (6) 

Interestingly, by restricting the action of the transformation (5) to ∂D., the SU(1, 1). 

symmetry implies that |w| = 1.. Thence, setting w(z) = eiψ(z)
., ψ ∈ R., Eq. (6) 

reduces to the first-order nonlinear differential equation of a single real variable 

.
dψ

dz
= 2κ cos (ψ + ϕ) . (7) 

This sole parameter ψ . encodes all relevant spectral information, i.e., both amplitude 

and phase of each element of the transfer matrix (N.B.— S. has three degrees 

of freedom, independently of the chosen parameterization). Nonetheless, even if 

Eq. (7) is numerically solved, identifying P and Q remains elusive. 

Fortunately, some powerful properties of linear fractional transformations come 

to the rescue. Indeed, a Möbius transformation 

. w = aw0 + b

cw0 + d
, where ad l= bc ,

is completely defined by the cross-ratio [15] 

. 
(w − w1) (w2 − w3)

(w − w3) (w2 − w1)
= (w0 − w01) (w02 − w03)

(w0 − w03) (w02 − w01)
,

and therefore is uniquely determined by its values at three finite points:A (w01, w1)., 

B (w02, w2)., C (w03, w3).. Whence, the generally complex coefficients are given by
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. a =

l

l

l

l

l

l

w01w1 w1 1

w02w2 w2 1

w03w3 w3 1

l

l

l

l

l

l

, b =

l

l

l

l

l

l

w01w1 w01 w1

w02w2 w02 w2

w03w3 w03 w3

l

l

l

l

l

l

, c =

l

l

l

l

l

l

w01 w1 1

w02 w2 1

w03 w3 1

l

l

l

l

l

l

, d =

l

l

l

l

l

l

w01w1 w01 1

w02w2 w02 1

w03w3 w03 1

l

l

l

l

l

l

.

To fully identify both amplitude and phase of P and Q, we need three pairs of 

(ψ0j , ψj )., where j = 1, 2, 3.. Thus, we need to solve Eq. (7) three times, each with a 

different initial condition ψ0i .. For convenience, let us choose: ψ01 = 0., ψ02 = π/4., 

and ψ03 = π/2.; these choices are arbitrary—any finite and discrete points on the 

unit circle will suffice. The transfer matrix is then 

.

(

P Q

Q∗ P ∗

)

= 1√
ad − bc

(

a b

c d

)

, (8) 

with the intensity reflectance and transmittance obtained by applying the boundary 

condition A−(L) = 0.. They read R = | − Q∗/P ∗|2 . and T = |1/P ∗|2 ., respectively. 
Not surprisingly, there is a case wherein Eq. (7) can be solved analytically: none 

other than linear detuning. In particular, when the phase term of the grating is ϕ(z) =
δkz., where δk = 2n̄k0 − K0 . is a detuning parameter, by appropriately changing the 

variable as f = ψ + δkz., Eq. (7) reduces to 

.
df

dz
= 2κ cos f + δk . (9) 

Surprisingly, Eq. (9) is, in fact, the Adler equation from coupled-oscillator theory, 

with applications in, e.g., Josephson junctions and injection locking, to name a few. 

The analytic solution to Eq. (9), in terms of ψ ., takes the cumbersome form 

. ψ = 2tan−1

l

δk
2A

cosϕ+ sinh (Az) + sinϕ+ cosh (Az) + κ
A
cosϕ− sinh (Az)

− δk
2A

sinϕ+ sinh (Az) + cosϕ+ cosh (Az) + κ
A
sinϕ− sinh (Az)

l

,

with A=
l

κ2− (δk/2)2
l1/2

. and ϕ± = (ψ0 ∓ ϕ)/2.. Setting w (z) = (1+ui)/(1−ui). 

and w0 (z) = (1 + u0i)/(1 − u0i)., where u= tan (ψ/2). and u0 = tan (ψ0/2)., 

reconstructive surgery reproduces the well-known results: 

.P (z) = e−iϕ/2p and Q(z) = e−iϕ/2q , (10) 

where 

.p = cosh (Az) + i
δk

2A
sinh (Az) and q = i

κ

A
sinh (Az) . (11) 

The spatial and spectral evolutions of the variable ψ . are depicted in Figs. 3a, b 

respectively. While these figures may not directly highlight anything about the 

nature of the Bragg grating, observant readers may discern a pattern: curves within
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Fig. 3 Two aspects of the variable ψ . that encrypts all information related to a Bragg grating. In 

the uniform index modulation scenario of this example, curves within the Bragg zone exhibit no 

inflection points, while those outside have at least one (Reprinted with permission from Ref. [1] 

© American Physical Society) 

the Bragg zone, where A ∈ R., exhibit no inflection points, whereas those outside, 

where A = |A|i ∈ C., have at least one. This criterion, easily verifiable by high-

school analysis (just check the second derivative test), aligns with the stability 

condition of the Adler equation, as seen in Ref. [16] and elaborated in Ref. [1]. 

Converting to the actual fields, one can determine the allowed wavenumbers [1] 

.k = K0

2
+ sgn (δk)

l

(

n̄k0 − K0

2

)2

−
(

k0δn̄

2

)2
l1/2

. (12) 

Due to the kinship to the Adler equation, Eq. (12) may be interpreted as the 

“phase rotation number” of dynamic systems (cf. Eq. (11) in Ref. [16]). For 

uniform modulation, such a dispersion relation is illustrated in Fig. 4a, where 

the approximate relation of coupled-wave theory given by Eq. (12) is plotted 

alongside the exact Floquet–Bloch curve (for the first harmonic). Both theories are 

in excellent agreement, predicting a regime where the real part of the wavenumber 

k remains constant while the associated imaginary part is nonzero, signifying strong 

attenuation. 

The photonic bandgap exhibited by (uniform) Bragg gratings has a natural 

affinity to the Möbius method. In fact, if w
S̃

= eiK0zw ., where w is that of Eq. (5), 

the transformation’s fixed points, found on solving w (γ ) = γ ., lie on the unit 

circle ∂D. for wavelengths inside the Bragg zone, whereas either inside or outside 

∂D. otherwise. Crucially, as we prove in Ref. [1], such a criterion is not restricted 

to linear detuning, being applicable to any SU(1, 1). symmetrical structure with 

arbitrarily complex refractive index modulation. 

Another intriguing facet of the photonic bandgap relates to the broader classifi-

cation of Möbius transformations, as proposed in prior works [17]. Within uniform
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Fig. 4 Dispersion features of a uniform Bragg grating in two different domains (Reprinted with 

permission from Ref. [1] © American Physical Society) 

and loss/gain-free gratings, the real part of the trace of the transfer matrix1 serves 

to classify the transformation. Indeed, if σ =
l

trace
)

S̃
(l2

., these transformations 

can fall into categories such as, e.g., elliptic (0 ≤ σ < 4.), parabolic (σ = 4.), 

or indeed hyperbolic (4 < σ < ∞.). Such a correlation is anticipated due to the 

known affinity between the trace of transfer matrices, the Bloch angle, and the phase 

rotation number. Beyond the Bragg zone, the Möbius representation is elliptical; at 

the edges, it transitions to parabolic, while within, it is hyperbolic. 

Hitherto, we have been discussing a fresh perspective on the otherwise well-

understood uniform Bragg gratings. Nevertheless, the motivation for developing 

the Möbius transformation was to examine nontrivial modulation scenarios. To that 

extent, Fig. 5a illustrates the optical response of a linearly chirped Bragg grating, 

i.e., a grating whose local spatial frequency acquires an additional AK (z) =
l

2F/L2
l

z. term, with F being the chirp coefficient. Without further details, one 

could imagine that the Möbius method could be applicable to more advanced 

modulation scenarios, such as quadratic chirping and apodization (N.B.— no 

requirement that the coupling coefficient κ . is constant has been imposed, and the 

definitions seen in Eq. (2) are for purely pedagogical purposes). However, for the 

sake of brevity, we believe that demonstrating the method’s performance in phase 

discontinuities is a better proof-of-concept. Therefore, in Fig. 5b, we display the 

optical spectrum of two similar uniform cascaded gratings with slightly dissimilar 

pitches, A1 . and A2 ., satisfying the spectral hole condition 1/A2 − 1/A1 = 1/L. 

of Ref. [18]. Around λ = n̄ (A1 + A2)., a spectral hole ensues, which is indeed 

successfully captured by the Möbius method. 

1 In this instance, we refer to S̃ = (p q; q∗ p∗)., where  p and q are those of Eq. (11).
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Fig. 5 Optical spectra accessed via the Möbius method for advanced index modulation scenarios 

(Reprinted with permission from Ref. [1] © American Physical Society) 

3 A Circular Bragg Phenomenon for All Handednesses 

Equipped with the toolkit of coupled-wave theory of Sect. 2, we proceed to 

examine a medium that embodies the two primary aspects of chirality: magneto-

electric coupling resulting from the absence of mirror symmetry at the molecular 

scale,2 and structural chirality arising from the helical stacking of birefringent 

layers. Consequently, our complex medium will be aptly christened as optically 

active structurally chiral. On the one hand, while the term “optical activity” may 

be somewhat ambiguous, mainly due to its broad context, there is unanimous 

agreement on the definition of circular birefringence: the propagation of orthogonal 

circularly polarized states at different speeds. On the other hand, the distinctive 

response of structurally chiral mediums indicates that a circularly polarized wave, 

whose handedness coalesces with the structural handedness of the medium, gets 

strongly backscattered when its wavelength matches the pitch of the scaffold. 

Conversely, the orthogonal polarization state traverses the medium unaffected, being 

accountable only to absorption. 

A natural question arises: what occurs in mediums where both aspects of chirality 

coexist? Before attempting to address this question, it is crucial to provide at least 

some evidence of the existence of such mediums. As it happens, the porous nature 

of sculptured thin films appears to provide the ideal platform for infiltration by 

a chiral fluid, as demonstrated by Sherwin and Lakhtakia in Ref. [2]. We revisit 

such a medium, albeit, instead of employing the Oseen transformation and resorting 

to the brute force of numerical simulations, we opt for the coupled-wave theory 

approach—though, we will not spare some symmetries of the exact system!

2 To the same order of multipole approximation, electric–electric quadrupole coupling is important 

in many forms of natural optical activity, such as circular dichroism in oriented mediums—see 

Chap. 4 of Ref. [19]. 
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If E., B. are the primitive electromagnetic fields, and D., H. are their associated 

stimulated excitation fields, we define the auxiliary fields b = (η0/μ0)B., d =
e−1
0 D., and h = η0H., which share the same dimensions as the E.-field. Here, e0 ., μ0 ., 

and η0 = (μ0/e0)
1/2

. are the free-space permittivity, permeability, and impedance, 

respectively. For the current purposes, we supplement Maxwell’s macroscopic 

equations with Tellegen’s constitutive connections for the simplest reciprocal bi-

isotropic medium, viz., 

.d = eE + iαh and b = −iαE + μh . (13) 

In Eq. (13), e ., μ., and α . are the relative (i.e., dimensionless) permittivity, permeabil-

ity, and chirality parameters, respectively, with the latter measuring the wavelengths 

after which the E.-vector of a linearly polarized wave is rotated by 2π .. Under this 

slightly quirky notation, and for an e−iωt
.harmonic excitation, combining Maxwell’s 

macroscopic source-free curl relations leads to the chiral Helmholtz wave equation 

.
d2E

dz2
+ 2αk0

d

dz

l

ẑ × E
l

+ k20

)

eμ − α2
(

E = 0 . (14) 

Structural chirality may then be incorporated into the model by replacing the 

scalar (relative) permittivity in Eqs. (13) and (14) with the dielectric tensor 

. e = R · ê · R−1 ,

where ê = diag (ea, eb, ec). is the static dielectric tensor, and R. periodically rotates 

the medium’s eigenaxes about ẑ.with a period A = 2π/p .. In a Cartesian basis, 

.R =

⎛

⎝

cos (pz) −h sin (pz) 0

h sin (pz) cos (pz) 0

0 0 1

⎞

⎠ , (15) 

whereby for h = +1. (respectively, h = −1.), the medium is regarded as a right-

(respectively, left-) handed. The tensor’s transverse projection is expressed as [20] 

.e⊥ = R⊥ · ê⊥ · R−1
⊥ , (16) 

where R⊥ = (σ/2) eipz + (σ ∗/2) e−ipz
., with σ = (1 hi;−hi 1).. Here, ê⊥ = ē I +

δe J., with ē = (ẽ + eb)/2. and δe = (ẽ − eb)/2.; ẽ . is a function of the background 

tensor’s components and of the rise angle, I. it the unitary matrix, and J. its symplectic 

form. 

If n̄ = (ēμ)1/2 ., it proves instructive to expand the transverse part of the electric 

field in a circular basis as per Jaggard et al. in Ref. [21], namely
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. E⊥ =
)

A+
Leik0(n̄+α)z + A−

Re−ik0(n̄−α)z
(

Q1+
)

A+
Reik0(n̄−α)z + A−

Le−ik0(n̄+α)z
(

Q2 ,

(17) 

where Q1 = 2−1/2 (1 i)T . and Q2 = 2−1/2 (1 − i)T ., with T . denoting transpose.3 

Under the slowly varying envelope approximation, if we replace in Eq. (14) the 

permittivity scalar with the tensor of Eq. (16) and substitute Eq. (17), we can phase-

match synchronous terms by time-averaging upon several optical cycles. Whence, 

resolving along Q1 . and Q2 ., we obtain, respectively, 

. 
dA+

L

dz
eik0(n̄+α)z

−
dA−

R

dz
e−ik0(n̄−α)z = iκA+

Rei[k0(n̄−α)−2hp]z + iκA−
Le−i[k0(n̄+α)+2hp]z ,

dA+
R

dz
eik0(n̄−α)z

−
dA−

L

dz
e−ik0(n̄+α)z = iκA+

Lei[k0(n̄+α)+2hp]z + iκA−
Re−i[k0(n̄−α)−2hp]z ,

where the coupling constant is that of Eq. (2) with δn̄ = |ẽ1/2 − e
1/2
b | ∈ R.. 

We may now concisely cast the aforementioned equations as Eq. (B4) of Ref. [3], 

. 
d

dz

⎛

⎜

⎜

⎝

A+
L

A−
L

A+
R

A−
R

⎞

⎟

⎟

⎠

= iκ

⎛

⎜

⎜

⎝

0 e−iδLz e−iδcz 0

−eiδLz 0 0 −eiδcz

eiδcz 0 0 e−iδRz

0 −e−iδcz −eiδRz 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

A+
L

A−
L

A+
R

A−
R

⎞

⎟

⎟

⎠

,

where the detuning parameters, δR = 2k0 (n̄ − α) − 2hp ., δL = 2k0 (n̄ + α) + 2hp ., 

and δc = 2k0α+2hp ., are explicitly linked to the corresponding mode’s handedness. 

In a right-handed medium, the on-resonance condition for RCP light yields 

.Re(δR) = 0 ⇒ λBr0

l

l

l

RCP

h=+1
= A [Re(n̄) − α] , α < Re(n̄) . (18) 

As anticipated, Eq. (18) is none other than the well-known Bragg condition of the 

circular Bragg phenomenon, albeit linearly shifted by the presence of the chiral 

fluid. This result corroborates the findings of Ref. [2]: the fluid’s chirality linearly 

shifts the Bragg resonance toward the red or the blue, depending on the sense of 

optical rotation (i.e., the sign of α .). Such a linear shift is illustrated in Fig. 6a wherein

3 For |α| < n̄., the subscripts in the amplitudes, L and R, denote LCP and RCP light, respectively. 

However, if |α| > n̄., which is precisely the condition for entering the negative refraction 

due to chirality regime, the phase velocity and handedness of counter propagating modes are 

interchanged—see App. A of Ref. [3]. 
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various circular Bragg resonances are plotted for different values of the chirality 

parameter. Finally, setting δc = 0., we obtain k0α = −hp ., corresponding to modes 

that couple co-propagating cross-handed polarizations. 

As per Sect. 2, the coupled-wave system for, say, δR ≈ 0. has the solution 

.

(

A+
R

A−
R

)

z

=
(

P Q

Q∗ P ∗

)(

A+
R

A−
R

)

z=0

, (19) 

with P, Q. those of Eq. (10) if δk ≡ δR .. By contrast, at δc ≈ 0., the solution reads 

.

(

A+
L

A+
R

)

z

=
l

e−i δc
2 zp̃+ e−i δc

2 zq̃

ei δc
2 zq̃ ei δc

2 zp̃−

l

(

A+
L

A+
R

)

z=0

. (20) 

This time, p̃±
. and q̃ . have the same form as those appearing in Eq. (11), but with 

the hyperbolic functions being replaced by their associated trigonometric ones (e.g., 

sin. instead of sinh. etc.); Ac =
l

κ2 + (δc/2)
2
l1/2

.. 

Transforming Eq. (20) back to the E.-field on a circular basis, a continuous 

exchange between LCP and RCP light occurs in the vicinity of the regime where 

optical activity counterbalances structural chirality. This phenomenon is depicted 

in Fig. 6b whereby for incident LCP light, the intensity transmittances of LCP-to-

LCP and RCP-to-LCP oscillate periodically with the slab’s thickness. This evolution 

originates from linear polarizations in a birefringent medium being resolved onto a 

circular basis, which is rather mundane. However, what is not mundane at all is that 

the eigenmodes at λc
0 ., 

. E1 = eiẽ1/2k0z

(

cos (pz)

h sin (pz)

)

and E2 = eie
1/2
b k0z

(

−h sin (pz)

cos (pz)

)

,

are at once orthogonal and co-handed, inheriting the hosting medium’s handedness. 

Suppose now that in our right-handed structurally chiral medium, we equate, just 

for fun,4 the detuning parameter corresponding to a left-handed resonance, i.e., δL ., 

to zero. The on-resonance wavelength for LCP light would then be 

. λBr0

l

l

l

LCP

h=+1
= −A[Re(n̄) + α] . (21)

4 After our initial “funny” idea led to the identification of such a reverse circular Bragg 

phenomenon, we became more astute. We revisited the characteristic matrix of the system resulting 

from the full analytic electromagnetic analysis and the Oseen transformation, and we reversed 

the handedness using p instead of h. Thus, by transforming as (z; εb, ε̃, μ; k0; h, p, α) →
(z; εb, ε̃, μ; k0; h,−p,−α)., following Lakhtakia’s method in Ref. [22], we created the illusion 

that the medium’s handedness is reversed, despite h being fixed. 
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Fig. 6 Optical response of an optically active structurally chiral medium for non-giant chirality. 

At a specific wavelength, optical activity offsets structural chirality, rendering the medium simply 

linearly birefringent. There, eigenmodes which are otherwise conveniently represented on a 

circular basis exchange energy [(b) Is reprinted from Ref. [3] under a Creative Commons CC 

BY license] 

Intriguingly, accessing such a resonance is possible when α < −Re(n̄)., which also 

satisfies the condition outlined in Eq. (18) for the “regular” resonance to manifest. 

Therefore, when α < −Re(n̄)., the occurrence of two resonances is anticipated: one 

for light that aligns with the medium’s handedness, being strongly reflected, and 

another responsible for backscattering light that is ostensibly contra-handed to the 

medium.5 

Considering a finite slab of length L, filled with the medium under consideration, 

and surrounded by an isotropic dielectric with refractive index n1 . on one side and 

n2 . on the other, the optical response calculated by full electromagnetic analysis (see 

Ref. [3]) is illustrated in Fig. 7. Clearly, all spectral characteristics predicted from 

our analysis are observed. Notably, two resonances emerge: one for RCP light at 

λBr0

l

l

RCP

h=+1
= 1.297.µm, and the other for LCP at λBr0

l

l

LCP

h=+1
= 259.55.nm. 

In Fig. 7b, the decrease in overall transmittance at shorter wavelengths corre-

sponds to increased absorption due to increasing optical depth. At around λc
0 ., where 

the transfer of energy between TLL . ( TRR .) and TRL . ( TLR .) peaks, optical activity 

essentially “unwinds” the medium, rendering it merely birefringent with refractive 

indices ẽ1/2 . and e
1/2
b .. As the wavelength decreases further, the medium undergoes 

another “wrapping” but with opposite handedness, potentially leading to a reverse 

circular Bragg resonance. Despite maintaining its inherent structural handedness, 

giant chirality may reverse some of the modes’ handedness [3].

5 In this chapter, words such as “nominally” and “ostensibly” are selected with precision rather 

than poetic license. Although the structural handedness remains constant (if you doubt it, just take 

a snapshot of the helix!), the chirality of the modes changes upon entering negative refracting 

states. 
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Fig. 7 Optical response of a slab consisting of an optically active right-handed structurally chiral 

medium with giant chirality α = −1.5Re (n̄)., sandwiched between isotropic dielectrics (Reprinted 

from Ref. [3] under a Creative Commons CC BY license) 

As numerically observed in Ref. [2], optical activity also affects the peak 

reflectance. To explain this dependence, we may examine the on-resonance approx-

imate expression, RPeak = tanh2 (κL).. For a particular handedness, say, right, for 

RCP, we have kR
0 = p/(n̄ − a)., while for LCP, kL

0 = −p/(n̄ + a).. Thence, for the 

former, 

.RPeak
RR = tanh2

(

p

n̄ − α

μδe

2n̄
L

)

. (22) 

It is evident from Eq. (22) that increasing α . increases RPeak
RR .. On the contrary, for 

a left-handed medium, increasing α . has the opposite impact on RPeak
LL .. Figure 6a 

demonstrates how the reflectance spectrum of a right-handed structurally chiral 

medium varies with α .. Only RRR . is shown, as it is only this reflection spectrum that 

shows the circular Bragg phenomenon for the range of α . used in the simulation. 

In the same plot, the performance of Eq. (22) is also evaluated in the presence of 

absorption. The deviation from the actual peaks scales with the imaginary part of 

the dielectric parameters, but clearly demonstrates the monotonic of RPeak
RR .with α .. 

Furthermore, it is seen in Ref. [2] that optical activity also affects the resonance’s 

bandwidth. This is estimated by coupled-wave theory as Aλ0 = Re (δn̄) Lp .. Con-

sidering the optical rotation, signature of structural chirality, roughly proportional to 

the square of the local linear birefringence δn̄. [23], and by extending the argument 

to the optical rotation induced by the chiral fluid, we can state that Aλ0 ∼ α2Lp .. 

This qualitatively explains the quadratic dependence of Eq. (40) of Ref. [2]. 

Before turning the page on this section, let us clarify: what sort of value is α .? 

Is it realistic for the chirality to be comparable to the refractive index of commonly 

used mediums? The answer is both yes and no. No, because the optical rotatory 

power of naturally occurring mediums is typically extremely weak (e.g., an optically 

active crystal may well have a chirality parameter four of five orders of magnitude
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less than unity). Nevertheless, experimental efforts in what became known as the 

“meta-mediums” community led to fascinating demonstrations of artificial mediums 

exhibiting giant chirality across various realms of the radiation spectrum. For 

instance, in the visible spectrum, the gammadion nanostructure of Ref. [24] achieves 

an α ≈ 0.15. while Katsantonis et al. used in Ref. [25] some three-dimensional U-

shaped twisted rings to achieve enhanced and remarkably broadband optical activity 

in the lower THz region. For a comprehensive discussion on various meta-mediums 

implementations achieving giant chirality, we recommend Sec. 6 of Ref. [5] and the 

references therein. 

4 Bragg-Less Bragg Gratings 

In this section, we will revisit the problem outlined in Sect. 3, only this time, we shall 

approach it via a flanking maneuver. To that end, we halt the progressive rotation 

of the eigenaxes along and about the z-axis [i.e., we set p = 0. in Eq. (15)], thereby 

rendering the permittivity tensor equal to the background dielectric tensor. 

It proves handy to decompose the fields as E = Ellk̂ + E⊥ . and h = hllk̂ + h⊥ ., 

with k̂. being a unit vector in the direction of the wavevector k., and partition e . so 

that 

. e · E =
l

ê⊥ · E⊥ + ellEll
eT
ll · E⊥ + esEll

l

,

where ê⊥ : C2 → C2
., ell ∈ C2

. and es ∈ C.. Whence, for a monochromatic 

plane wave, Eei(k·r−ωt)
., combining the projections of Maxwell’s source-free macro-

scopic curl relations, we arrive at Eq. (14) but with the scalar permittivity being 

replaced by 

. ê
l

l = ê⊥ −
(

es − α2

μ

)−1

elle
T

ll . (23) 

It is deduced from Eq. (23) that ê
l

l.depends on the direction of k.. For propagation 

along a principal direction e
T

ll = 0., so in this case ê
l

l = ê⊥ ., which in suitable 

transverse coordinates can be reduced to ê
l

l = diag (e1, e2).. In the presence of 

birefringence (say, e1 l= e3 .) for general propagation in the x − z. plane, the principal 

indices depend on α .. This is a slightly surprising result, given that they do not 

depend on α . for propagation along a principal axis, and soon we will use it to our 

advantage. 

Henceforth, we elect a propagation coordinate system (k = kẑ.) with transverse 

coordinates ( x, y .) such that they diagonalize the permittivity tensor as ê
l

l =
diag (e1, e2).. Then, the supported by the medium refractive indices turn out 

to be [4]
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. ± n(±) = ±
l

n̄2 + α2 ±
)

Ae2μ2 + 4α2n̄2
(1/2

ll1/2

, (24) 

with ē = (e1 + e2)/2. and Ae = (e2 − e1)/2.. 

Scrutinizing Eq. (24) shows that for an ordering e2 > e1 ., if  

.e1μ < α2 < e2μ , (25) 

then two branches of ± n(±)
. become purely imaginary. We thus have evanescence 

in a bulk dielectric medium! Note that if Ae = 0., then the evanescent region 

disappears. Thus, we can postulate that α = n̄. is the “resonant” α . yielding the 

largest imaginary value of ± n(−)
.. For this value, we find 

. nresL ≈ 2n̄ and nresR ≈ i
Ae

2

)μ

ē

(1/2
,

the approximations being valid for Ae << ē .; the subscripts referring to a specific 

polarization state will be subsequently justified. 

Figure 8a depicts all four branches of the refractive indices in Eq. (24) as func-

tions of the chirality parameter. At this point, we want to prevent a potential source 

of confusion: Fig. 8a is not a typical dispersion diagram but may be interpreted as 

the variation of the refractive index with the chirality parameter. Current technology 

is capable of controlling chirality through various methods, such as piezoelectricity 

[26], external electric fields [27], or conductivity [28] to name a few. Additionally, 

Fig. 8a illustrates the corresponding polarization of each eigenmode, found on 

inserting Eq. (24) into Eq. (14) and solving for E⊥y/E⊥x .. At approximately α =
±n̄., two stopbands emerge [cf. Eq. (25)], wherein the eigenpolarizations are circular 

with opposite handedness. The affinity of this situation to the one examined in 

Sect. 3 warrants further investigation. 

We won’t be original this time either—we will utilize coupled-wave theory, 

again! Using the same ansatz as that of Eq. (17), and noting the interesting algebra, 

(×)Q1 = −iQ1 . and (×)Q2 = iQ2 ., we apply the same approximations as in Sect. 2. 

Thence, upon resolving along Q1 . and Q2 ., phase matching at α = ±n̄. leads to 

. 
dA+

L

dz
= iκA−

Le−ik0δ(+)z ,
dA−

R

dz
= −iκA+

Reik0δ(−)z ,

and 

. 
dA+

R

dz
= iκA−

Re−ik0δ(−)z ,
dA−

L

dz
= −iκA+

Leik0δ(+)z ,

respectively. In this instance, the identified coupling coefficient is given by
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.κ = k0μ

2n̄
Ae , (26) 

which precisely encapsulates the essence of the coupling mechanism: it disappears 

when we switch off linear birefringence. The detuning parameters are δ(±) =
2(n̄ ± α)., being, crucially, wavelength-independent. It should be noted that at this 

stage, we do not state that n̄. and α . are non-dispersive, but rather that there is not 

a direct wavelength dependence on the tuning condition. Thus, we contend that the 

proposed mechanism is inherently broadband, with its actual broadband capability 

being determined by the differential dispersion between n̄. and α .. 

The coupled-wave equations derived in this context can be compactly re-

expressed as per Eq. (1), i.e., as 

.
d

dz

l

A+
L,R

A−
L,R

l

=
(

0 iκe−iδL,Rz

−iκeiδL,Rz 0

)

l

A+
L,R

A−
L,R

l

, (27) 

since at α ≈ n̄. (respectively, α ≈ −n̄.), the A±
L . (respectively, A±

R .) amplitudes remain 

constant, while the orthogonals follow a Bragg-like evolution. The solutions to the 

systems appearing in Eq. (27) are represented by the matrix in Eq. (8), where P 

and Q correspond to those in Eq. (10) when the suitable detunings and coupling 

coefficient are substituted. 

These two pairs of coupled-wave equations are precisely what we aimed for! 

They describe a Bragg-like phenomenon centered at α = n̄.. We also note that within 

the Bragg regime, circularly polarized light is reflected with the same handedness, 

making the phenomenon akin to the circular Bragg phenomenon associated with 

Fig. 8 The refractive indices of a linearly and circularly birefringent medium, as functions of 

the chirality parameter, indicate the existence of two stopbands centered at α = ±n̄., where  

evanescence occurs. Around α ≈ n̄., the chiral circularly polarized eigenstates, propagating at 

speed c/α ., synchronously and alternately sample the copropagating birefringent eigenaxes [(a) Is  

reprinted with permission from Ref. [4] © Optical Society of America; (b) is adapted from ArXiv 

under a Creative Commons CC BY license]
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structurally chiral mediums. However, it is important to highlight that here, there is 

no need any kind of fabrication (e.g., witting a refractive index profile via a phase 

mask illuminated by UV light). Furthermore, a significant distinction lies in the fact 

that in this case, the “Bragg resonance” arises via medium parameters (cf. α ≈
n̄.) rather than through a wavelength condition (cf. λ0 ≈ n̄A.). In other words, all 

wavelengths will be reflected whenever α ≈ n̄., thus justifying our claim for an 

arbitrarily broadband “grating without a grating.” 

The birefringence could be electrically switched on, offering a wide-bandwidth, 

electro-optic switch. When circularly polarized light propagates at the same speed 

as light in the absence of both optical activity and birefringence, it encounters the 

birefringence-induced grating. It is as if the birefringence “grating” is formed by 

a wave propagating with a refractive index n̄., sampled by a circular polarization 

rotating at the same rate. Such a heuristic picture is illustrated in Fig. 8b, which 

shows the non-chiral linear eigenstates propagating with an average speed of c/n̄., 

and the chiral circularly polarized eigenstates propagating with speed c/α .. The latter 

synchronously and alternately sample the co-propagating birefringent eigenaxes, 

provided that α ≈ n̄.. 

In the coupled-wave theory description outlined in Eq. (27), we can readily 

compute the optical response of a finite slab of the considered medium. However, 

we note a minor subtlety: we assume that the surrounding medium is approximately 

index- (and impedance-) matched with the slab, meaning it has a refractive index 

n = n̄.. Otherwise, Fresnel reflections localized at the boundaries would need to 

be taken into account. While not essential for the layout of our arguments, readers 

interested in further details can refer to the standard calculations provided in Ref. 

[29]. 

When discussing Bragg reflections, it is customary to illustrate the intensity 

reflectances. However, in Fig. 9a, we present intensity transmittances as functions of 

the chirality parameter to demonstrate, once again, the exchange between circular 

states at α = 0. (cf. Fig. 6b), where the eigenmodes are purely linear [4]: 

.
E⊥ (0)

A+
R (0)

= i√
2

(

1

i

)

+ 1√
2

(

1

−i

)

. (28) 

The Bragg-like puzzle is completed in Fig. 9b, which shows the on-resonance 

evolution of TRR . transmittance into RRR . reflectance as a function of film thickness. 

As aforesaid, for off-axis propagation, the principal indices depend on the 

chirality parameter [cf. Eq. (4)]. This unexpected finding has the potential to relax 

the α = n̄. tuning condition, as it introduces an additional degree of freedom via the 

inclination angle formed between the optical axis and the direction of wave prop-

agation. Inspired by this observation, we can now generalize the problem further: 

considering off-axis propagation in uniaxial bi-anisotropic mediums. Consequently, 

all three scalars in the constitutive connections of Eq. (13) will be replaced by 

tensors. Additionally, we distinguish the cross-coupling between D., h., and b., E.. 

In other words, we rewrite the constitutive relations as:
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Fig. 9 Bragg-like electromagnetic response achieved in a uniform linearly and circularly birefrin-

gent mediums without refractive index modulation. At α ≈ ±n̄., one circular polarization state is 

strongly reflected, while the orthogonal state is transmitted. The evolution from co-transmittance 

to co-reflectance, as a function of the slab’s normalized thickness, mirrors that of uniform Bragg 

gratings. However, unlike Bragg gratings, there is no coherent superposition of waves originating 

from distributed local reflections 

.d = e · E + ξ · h and b = ζ · E + μ · h , (29) 

whereby aligning our Cartesian system’s z-axis with the optical axis of the medium 

(cf. Fig. 10a), the components of these tensors are 

. e =

⎛

⎝

e 0 0

0 e 0

0 0 ez

⎞

⎠ , μ =

⎛

⎝

μ 0 0

0 μ 0

0 0 μz

⎞

⎠ , ξ =

⎛

⎝

ξ 0 0

0 ξ 0

0 0 ξz

⎞

⎠ , and ζ =

⎛

⎝

ζ 0 0

0 ζ 0

0 0 ζz

⎞

⎠ .

For a non-reciprocal loss-free medium ξ = χ − iκ ., ξz = χz − iκz ., ζ = ξ∗
., and ζz =

ξ∗
z ., where κ, κz ∈ R. are the transverse and axial chirality parameters, respectively, 

and χ, χz ∈ R. are the associated Tellegen coefficients6 . 

Although solving this general problem is quite challenging, as it requires, e.g., 

rotating the tensors of Eq. (4) so that the direction of propagation in a primed 

coordinate system coincides with the optical axis,7 the recipe is pretty much the 

same as the one developed earlier; analytic derivations can be found in Ref. [5]. If

6 And a little bit of history: While Tellegen mediums are currently widely accepted amongst the 

scientific community, this was not always the case. In the mid-90s, several theoretical arguments 

against the existence of non-reciprocal bi-isotropic mediums (see, e.g., Refs. [30, 31]) clashed 

with several others in favor (see, e.g., Refs. [32, 33]). The initial experimental demonstrations of 

artificial Tellegen mediums [34], signaled a shift toward including the Tellegen coefficient. 
7 In fact, as depicted in Fig. 10a, rather than studying oblique incidence, we investigate normal 

incidence with the optical axis of the medium forming an angle θ .with the direction perpendicular 

to the transverse surfaces of the slab. This approach significantly simplifies matching the fields. 
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Fig. 10 Off-axis propagation in axially uniaxial bi-anisotropic mediums gives rise to a Bragg-like 

response in the chirality domain, with the angle formed between the direction of propagation and 

the optical axis exerting control over the resonances’ features (Reprinted with permission from 

Ref. [5] © Optical Society of America) 

μ = μI., the refractive indices of an axially bi-anisotropic uniaxial medium are [35] 

. ± n(±) = ±
l

eμ
l

ezμ − |ξz|2
l

ēμ − |ξz|2 cos2 θ ∓ sin2 θ
l

Aē2μ2 + eμ|ξz|2
l1/2

l1/2

. (30) 

In this instance, although the equivalent linear birefringence is Aē = (e − ez)/2., 

and thus, it is independent of the inclination angle, the average permittivity 

. ̄e = ez(1 + cos2 θ) + e sin2 θ

2
,

depends on the angle θ ∈ [0, π/2].. The refractive indices of Eq. (30) are plotted as 
functions of the axial chirality parameter in Fig. 10b. 

Detailed algebraic manipulations demonstrate that the center of the resonance, 

i.e., the value of the chirality parameter for which the purely imaginary refractive 

indices of Eq. (30) acquire their largest imaginary part is 

.κ (θ, χ) = ±1

2

l

)

ezμ − χ2
z

(1/2
+
) esμ

cos4 θ
− χ2

z

(1/2
ll

. (31)
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Hence, by allowing the wave to propagate off-axis and by introducing the Tellegen 

coefficients, we have achieved not just one but two means of controlling the center 

of the Bragg-like resonances. Thus, for a specific set of angles, the modified version 

of our uniform Bragg reflector proves advantageous over the one corresponding to 

axial propagation. This advantage primarily stems from the ability of θ . and χ . to 

significantly alleviate the requirement for giant chirality. However, to avoid boring 

the readers to death, we set aside analytic arguments, and we urge believers to trust 

our assertions while inviting non-believers to refer to Fig. 3 of Ref. [5]. 

The late Weiglhofer, a true expert of wave propagation in uniaxial bi-anisotropic 

mediums, investigated various singularities, focusing on axially bi-anisotropic 

mediums in Ref. [6] and transversely bi-anisotropic mediums in Ref. [7]. In these 

works, he demonstrated that, under specific conditions, certain modes can be 

suppressed, leading to a transition into negative refractive states due to chirality 

[11]. As depicted in Fig. 10b, at the upper (respectively, lower) edge of the stopband 

corresponding to positive (respectively, negative) axial chirality, the refractive 

indices diverge. In the absence of absorption, the refractive indices become infinite 

(N.B.— Fig. 10b includes absorption). For the particular value of the inclination 

angle where such a singularity occurs, θc ∈ (0, π/2)., solving the eigenmode 

problem directly from Maxwell’s equations, we find that the Cartesian components 

of the eigenmodes are: 

. E = E0

)

1 0 nc (ζ − ξ) ˜̃e−1
(T

,

h = E0μ
−1
)

−ζ nc nc
l

ξζ − ζ 2
l ˜̃e−1

(T

.

At these singular points, the polarization shifts to linear, while the Ex . and Ez . 

components are in quadrature. Since the resonant condition does not implicitly 

specify any particular wavelength, it theoretically applies to a very broad wavelength 

range. Additionally, these indices can be controlled by adjusting the inclination 

angle θ ., or, as we show in Ref. [36], via the gyrotropic parameter. 

5 Replacing the z’s with the t’s: Parametric Amplification 

It is about time that we abandon the static mediums and move on to their dynamic 

counterparts. Of course, time-varying mediums are a very old business. From 

Morgenthaler’s pioneering work [37] to the most recent and exciting demonstration 

of the dual to Young’s “double-slit” experiment by Sapienza’s group [38], the key 

point remains the same: When a propagating electromagnetic wave encounters an 

abrupt change in the medium’s electromagnetic properties at a specific moment, the 

conservation of translational symmetry implied by Noether’s theorem dictates that 

momentum is conserved; conversely, energy is not.
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As one would suspect, upon replacing the z’s with the t’s, i.e., modulating in time 

rather than in space, some complications arise: the generation of negative frequen-

cies. If, for the time being, we accept such a nomenclature, for an instantaneously 

responding medium,8 the usual constitutive relations become 

.d = e(t)E and b = μh, (32) 

where the relative permittivity is a periodic function of time with a period Tp .. 

Considering that momentum is conserved, it is suitable to express the displace-

ment field as a product of its spatial, ds ., and temporal, dt ., part, i.e., d (z, t; k) =
ds (z; k) dt (t; k).. Under such a decomposition, combining Maxwell’s curl relations 

into a wave equation in terms of the total displacement field allows for separation of 

the variables. Thus, for the spatial part of the field, we obtain the usual Helmholtz 

wave equation, while for the temporal part of the field, we get 

.
d2dt (t)

dt2
+ θ (t) dt (t) = 0 , (33) 

which is a Hill equation with θ (t) = k2c2/e(t)μ.. 

In accordance with the coupled-wave theory adaptation for time-varying medi-

ums outlined in Ref. [41], a suitable ansatz for Eq. (33) is 

.dt (t) = d+
t (t)eiω0t + d−

t (t)e−iω0t , (34) 

where ω0 . represents the unperturbed angular frequency, and we have dropped the 

eikz
. term. But what does negative time signify in Eq. (34)? Should we pause here, as 

we peruse this page, and endeavor to measure the signal of an experiment scheduled 

for the future? As intriguing as it may seem, negative time, or equivalently, 

negative frequency, which can be interpreted as phase conjugation [42], is merely 

a mathematical trick. Indeed, this becomes evident when one observes that the real 

part of a conventionally backward propagating wave, Ee−i(kz+ωt)
., is identical to the 

real part of its complex conjugate, E∗ei(kz+ωt)
., that has negative angular frequency. 

The modulation profile of the permittivity is chosen as 

.e(t) = ē + δe cos (ot) , (35) 

where o = 2π/Tp . is the modulation frequency. Then, by taking the Fourier 

expansion of the coefficient of Eq. (33), we retain only terms related to the first 

harmonic and write

8 Time-varying mediums that exhibit (almost) instantaneous responses have been experimentally 

observed in the vicinity of the epsilon-near-zero regime (see, e.g., [39, 40]). 
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.θ (t) ≈ θ̄ + δθ
eiot + e−iot

2
. (36) 

In Eq. (36), the dc-term and the ac-term are given by 

. θ̄ =
c20

Tp

( Tp

0

dτ

e(τ )
and δθ = −c20

δe

ē2
,

respectively. If we substitute Eqs. (34) and (36) into Eq. (33), phase-matching 

synchronous terms yields a system similar to that of Eq. (1) albeit with the detuning 

parameter and the coupling coefficient being, respectively, 

. δω = ω0 − o

2
and κ = −ω0

4

δe

ē2
.

With all the ingredients at hand, we are well-prepared to examine the temporal 

analog of Bragg gratings. Turning once again to the dispersion relation of Eq. (12), 

in this instance, there is a “1-1” projection to the spatial case, namely [8] 

.ω = o

2
+ sign (δω)

⎡

⎣

(

l

θ̄k − o

2

)2

−
l

kδθ

4c20

√
θ̄

l2
⎤

⎦

1/2

. (37) 

The Brillouin diagram illustrating such a dispersion relation is shown in Fig. 11a, 

where the formation of a momentum gap at ω ≈ o/2. is observed. Given the 

resemblance of Fig. 11a to the dispersion of a static uniform Bragg grating, as 

seen, e.g., in Fig. 4a, one might hastily conclude that the temporal counterparts of 

spatially modulated dielectrics also exhibit stopbands where waves are attenuated. 

Nevertheless, within the gap formed in dynamic mediums, we observe amplifica-

tion! This claim can be readily supported if one pays due diligence to the harmonic 

conventions. Indeed, akin to the spatial modulation scheme, within the bandgap, ω . 

acquires an imaginary component. However, in this scenario, setting ω = ω' − iω''
. 

in the wave propagating “backward” in time, Ee−i(kz+ωt)
., leads to amplification 

instead of evanescence. 

The next step in unraveling the mystic nature of temporal gratings would be 

to investigate their optical response. Before doing so, we need to explicitly define 

the equivalent of a medium slab, essentially giving the term “temporal slab” some 

meaning. According to Ramaccia et al. in Ref. [43], a temporal slab refers to a 

specific period of time during which a particular set of constitutive parameters, such 

as the relative permittivity of a dielectric medium, undergoes modulation (or abrupt 

variation) before returning to its original state. So far so good... but what about the 

boundary conditions? Well, in the considered case is perhaps more appropriate to 

talk about initial conditions, but nonetheless, the latter should include some kind 

of field matching. As comprehensively elaborated in Ref. [44], field-matching at
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temporal boundaries necessitates d±
t

l

0−, t−
l

= d±
t (0, t). 9 —and that makes all the 

difference in the world. 

Indeed, returning to Eq. (8) of Sect. 2, which gives the fundamental matrix 

that solves the archetypal coupled-wave system of Eq. (1), we now apply the 

aforementioned initial condition and, therefore, define the forward and backward 

intensity reflectances 

.R =
l

lQ∗l
l

2
and T = |P |2 ; (38) 

nothing in the Möbius method is altered—this is just the final step. 

The optical response of the temporal medium under discussion is depicted in 

Fig. 11b, where the time interval has been selected to ensure ample duration for the 

amplification process. It’s worth noting that choosing a time duration less than twice 

the period would be insufficient for the waves to extract the required energy from the 

modulating beam for amplification. This observation is in line with the principles 

of mechanical oscillation theory, which stipulate that for amplification to occur, the 

modulation frequency must be double that of the driving force. The behavior of the 

photonic bandgap resembles typical Bragg gratings, with the primary difference 

being that elongating the duration does not sharpen the resonance. This occurs 

because there is no platform where successive reflections from an alternating 

refractive index can consistently add up coherently in phase. Additionally, Fig. 11b 

illustrates the energy pseudo-conservation relation T − R = 1., which holds true 

Fig. 11 In the temporal analog of Bragg gratings, the Brillouin diagrams indicate that there are 

momentum gaps where parametric amplification occurs. There, waves with angular frequencies 

equal to half the modulation frequency of the slab are amplified (Reprinted with permission from 

Ref. [8] © Optical Society of America)

9 When δe << 1., the temporal slab approximately attains impedance matching with the pre- and 

post-modulation “surrounding” medium. 
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Fig. 12 Exotic time-periodic Bragg grating with even more exotic modulation profiles (Reprinted 

with permission from Ref. [8] © Optical Society of America) 

regardless of the modulation profile. This relation simply follows from the condition 

stated in Eq. (4). 

As emphasized in Sect. 2, we can explore scenarios where linear detuning 

coexists with apodization without presuming spatial or temporal constancy of the 

coupling coefficient. In that case, if o(t) ≈ 2ω0 +
l

2F/At2
l

t . and κ (t) =
κe
l

−(4/At)2(t−At/2)2
l

., the optical spectrum is depicted in Fig. 12a. It appears that 

the gradual decrease in the coupling of modes toward the beginning and end of 

the modulation diminishes its amplification capability, and compensation might be 

necessary. 

We conclude this section by discussing the temporal analog of the cascaded 

grating of equal lengths and slightly dissimilar pitches depicted in Fig. 5b. For the 

sake of variety, here, instead of “slightly dissimilar pitches,” we will use a phase 

delineation of π/2. exactly halfway through the temporal modulation—nothing 

really changes as these two schemes are mathematically equivalent [20]. As seen 

in Fig. 12b, a spectral hole also occurs here, around which the phase discontinuity 

leads to destructive interference. Such a spectral hole finds multiple applications in 

sensing and might prove beneficial for assessing the precision of the modulation of, 

say, the permittivity. 

6 Optical Rotation While the Signal Gets Amplified 

As indicated in the introduction, the two primary origins of chirality are magneto-

electric coupling and the helical stacking of birefringent layers. The temporal analog 

of the former, manifesting as temporal optical activity, appears to have first been 

discussed in Ref. [9]. Regarding the temporal version of the latter, although not 

implicitly viewed in this way, it constitutes the so-called Archimedes’ screw for 

light introduced by Galiffi et al. in Ref. [45]. In this final section, we build upon the
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parametric amplifier of Sect. 5 and explore how a time-periodic chirality influences 

the dispersion features and optical response of the temporal Bragg grating [10]. 

Once again, the starting point is Tellegen’s constitutive relations, as given in 

Eq. (13) and used for the same purpose in Ref. [9]. However, there is a problematic 

point: since chirality is inherently dispersive, how could we utilize the Tellegen 

model for a time-varying medium, which almost directly implies that new frequen-

cies are generated? Within the context of coupled-wave theory, the generation of 

new frequencies is not an essential concern. But precisely because such a theory can 

be easily generalized to include higher-order resonances, as demonstrated in Ref. 

[41], we ought to be exhaustive in our arguments. From all the various propositions 

in recent and older literature, the most convincing appears to be that of Mostafa et 

al. in Ref. [46]. In particular, they use the Condon model10 so that chirality could 

be regarded as non-dispersive [46] when working at wavelengths much longer than 

those for which the meta-atoms are resonant. 

Hence, we may now write the constitutive connections as 

.d = eE − gc0
∂h

∂t
and b = μh + gc0

∂E

∂t
, (39) 

whereby if ω . is an arbitrary frequency, then gr = ωc0g . is dimensionless. Note that 

although we have kept the notation appearing more frequently in the literature, we 

underline that gr . corresponds to the dimensionless chirality of previous sections 

and should not be confused with the gyrotropic parameter of Faraday mediums. 

Furthermore, for an instantaneously responding medium, the temporal modulation 

profile of the permittivity, permeability, and chirality is elected to be precisely the 

one appearing in Eq. (35). Thus, ē ., μ̄., and ḡ . are the dc-terms of the permittivity, 

permeability, and chirality, respectively, with δe ., δμ., and δg .being the corresponding 

ac-terms. Again, o. is the frequency of modulation, common for all three constitutive 

parameters, and the modulation strengths are presumed to be sufficiently weak. 

As if things were not complicated enough, we now have to bear the burden 

of magneto-electric coupling, which is, moreover, time-dependent. Fortunately, by 

contrast to the spatial version of our problem (seen, e.g., in Ref. [21]) our medium 

is, crucially, homogeneous11 Therefore, by employing the so-called wavefields 

decomposition (see Lindell’s et al. [35]), viz., 

.E(±) = 1

2
(E ± iηh) and h(±) = 1

2
[h ∓ (i/η)E] , (40) 

we reduce the bi-isotropic medium to an equivalent isotropic

10 It should be noted that, as per Silverman’s arguments in Ref. [47], the Condon model is indeed 

an excellent candidate, out of many, as it happens to be invariant under duality transformations. 
11 In the global time modulation we are currently working, the medium’s electromagnetic 

parameters change in time for all points in space; of course, by all points we refer to those 

transversed by the wave, which may well be anharmonic. 
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. 

l

d(±)

b(±)

l

=
l

e(±)(1, 2)

(2, 1)μ(±)

ll

E(±)

h(±)

l

, where
e(±)

e
= μ(±)

μ
= 1 ± gr

(eμ)1/2
.

(41) 

Using exactly the same decomposition of the displacement field into the product 

of its spatial and temporal parts as in Sect. 5, upon substituting into the wave 

equation 

.c20∇2d(±) = e(±)

∂μ(±)

∂t

∂d(±)

∂t
+ e(±)μ(±)

∂2d(±)

∂t2
. (42) 

we obtain a second-order differential equation with varying coefficients. Although 

we could have stopped the preliminary calculations here and regarded this equation 

as our starting point for the analysis to follow, certain initial conditions satisfied by 

the coefficients allow for a further reduction. Indeed, if [θ1](±) . is the coefficient 

associated with the first time derivative, by defining the auxiliary variable 

.yt
(±) = exp

(

1

2

( t

t0

[θ1](±)dt
'
)

d t
(±) , (43) 

we are led, once more, to the Hill equation of Eq. (33); of course, this time, the 

coefficient is slightly more complicated. Nevertheless, it can also be approximated 

by its first-order Fourier expansion, but this step is omitted for brevity. 

Taking the ansatz of Eq. (17) as the basis, we may define ω0,(±) = ω0(1 ∓ ḡ/n̄). 

and substitute 

.yt(±) =
l

yt
(±)

l+
e−iω0,(±)t +

l

yt
(±)

l−
eiω0,(±)t , (44) 

into the Hill equation. Under the same underlying ideas and approximations of 

Sect. 2, algebraic manipulation leads to the coupled-wave system of Eq. (1). In  

this instance, the coupling coefficients are χ(±) = −[δθ ](±)/4ω0,(±) ., whereas the 

detuning parameters are δω0,(±) = ω0(1 ∓ ḡ/n̄) − o/2.; N.B.— the subscript sign 

notation denotes handedness: “ +.” for RCP and “ −.” for LCP. 

Therefore, we can now derive a closed-form expression for the supported 

eigenfrequencies, as shown in Eq. (37), namely 

.ω(±) = o

2
+ sign(δω̃(±))

l

l

ω0

(

1 ∓ ḡr

n̄r

)

+ ω̄(±) − o

2

ll2

− χ2
(±)

l1/2

. (45) 

Be that as it may, in this instance, we have two different dispersion curves 

corresponding to orthogonal polarizations. Both branches are plotted in Fig. 13a, 

where it is evident that in the presence of chirality, two momentum gaps are formed, 

each associated with an orthogonal polarization state, with their resonances centered 

at
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Fig. 13 In the absence of magneto-electric coupling, non-constant impedance due to, say, the 

temporal modulation of the permittivity leads to the formation of a momentum gap. When chirality 

is introduced, two parametric amplification regimes emerge, each corresponding to orthogonal 

polarization states. At the edges of the momentum gaps, where the group velocity diverges, 

standing waves are formed (Reprinted with permission from Ref. [10] ©. Optical Society of 

America) 

.ωcntr
(+) = o

2

(

1 ∓ ḡr

n̄

)−1

. (46) 

The result of Eq. (46) is novel, but it should not come as a surprise—we have 

already seen in Sect. 3 what chirality can do to a resonance! In fact, Eq. (46) 

demonstrates that it is actually the dc-term of the chirality that induces a shift toward 

higher or lower frequencies. Of course, such a dependency does not manifest as a 

linear one, but this is due to the domain in which we examine the resonances. The 

influence of the ac-term of the chirality has a far more pronounced impact on the 

bandwidths and the peaks of the resonances, but these details are quite technical and 

are better suited to be discussed elsewhere. 

Furthermore, Fig. 13b illustrates the corresponding density of states, found by 

differentiating Eq. (45) with respect to the unperturbed frequency, which evidently 

diverges at the two edges of each momentum gap. Although such a divergence is of 

utmost importance in distributed feedback lasers, we emphasize that in time-varying 

mediums, the density of states corresponds to the group velocity and not its inverse 

as in the spatial case. At any rate, at the diverging points where standing waves 

are formed, although the group velocity approaches infinity, the signal velocity is 

always lower than the phase velocity of light in a vacuum. 

Once again delving into the optical response of a temporal slab of the medium 

under consideration, we observe in Fig. 14a that the scattering coefficients, com-

puted using the findings of Sect. 2, confirm the predictions presented in Fig. 14a. 

Additionally, the “pseudo-conservation” relation discussed in Sect. 5 remains valid, 

as it is a direct consequence of the underlying SU (1, 1). symmetry described in 

Sect. 2 [c.f. the condition in Eq. (4)]. For a low degree of magneto-electric coupling, 

where the two bandgaps may merge, the temporal modulation of permittivity still 

induces parametric amplifications. In such a case, the levels of the scattering
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Fig. 14 Optical response of a temporal slab of a time-periodic bi-isotropic medium. For waves of 

a particular handedness whose angular frequency falls within one of the momentum gaps shown 

in Fig. 13a, their plane of polarization is rotated upon transmission. The angle of rotation depends 

on the duration of the temporal modulation (Reprinted with permission from Ref. [10] ©. Optical 

Society of America) 

coefficients, as depicted in Fig. 14a, resemble those shown in Fig. 11a (assuming 

equal time durations). However, the influence of weak chirality is more prominent 

in the rotation of the plane of polarization of a wave residing within the momentum 

gap. This dynamic evolution is illustrated in Fig. 14b, where the simultaneous 

rotation of the electric field during wave amplification is evident. 

7 Concluding Remarks 

In this chapter, we delve into innovative Bragg-like resonances in both static 

and dynamic mediums, providing fresh insights into the realm of Bragg gratings 

beyond traditional understandings. Employing scalar coupled-wave theory and 

conformal mappings, we elucidate the optical responses of intricate structures and 

their connections to coupled-oscillator theory. Exploring phenomena such as the 

circular Bragg effect in chiral mediums, we uncover shifts and additional resonances 

induced by giant chirality. The notion of Bragg-less Bragg gratings challenges 

conventional ideas by demonstrating resonance without refractive index modulation, 

showcasing a polarization-selective response without any wavelength-matching 

requirement. Transitioning to temporal modulation, we discuss momentum gaps 

formed in time-modulated Bragg gratings, emphasizing parametric amplification 

and its relationship to energy conservation. Furthermore, we discuss the temporal 

analog of optical activity, revealing the mechanism by which chirality influences 

resonances and amplification factors. While purely theoretical, we are confident that 

our findings not only expand our comprehension of Bragg resonances but also hold 

relevance across a wide spectrum of the optics community, hopefully engaging both 

experimentalists and theorists alike.
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Geometric Phase and Nanoscale 

Architected Morphology of Reusch Piles 

Akhlesh Lakhtakia 

1 Introduction 

1.1 Poincaré Spinor 

Any uniform plane wave propagating in free space can be represented as a point 
on the surface of the Poincaré sphere s2

1 + s2
2 + s2

3 = s2
0 . [1], where s0 ., s1 ., s2 ., and 

s3 . are the four Stokes parameters [2]. The plane wave’s location is identified by 
the longitude α ∈ [0, 2π). and the latitude β ∈ [−π/2, π/2]. defined through the 
relations 

.

s1 = s0 cos β cos α

s2 = s0 cos β sin α

s3 = s0 sin β

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (1) 

as shown in Fig. 1. These two angles appear in the Poincaré spinor [3] 

.

l

φ
l

=

⎡

⎣

cos
l

π
4 − β

2

l

sin
l

π
4 − β

2

l

exp (iα)

⎤

⎦ , (2) 

where i =
√

−1.. 
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Fig. 1 Longitude 
α ∈ [0, 2π). and latitude 
β ∈ [−π/2, π/2]. that 
identify a plane wave on the 
Poincaré sphere 

1.2 Geometric Phase 

With respect to a plane wave labeled “1,” the geometric phase of a plane wave 
labeled “2” is defined as the angle 

.o21 = Arg

l

l

φ
1

l†
·
l

φ
2

l

l

, (3) 

where †
. denotes the conjugate transpose. The geometric phase is a measure of 

dissimilarity of two plane waves of the same frequency, even when propagating in 
the same direction, as was pointed out by Pancharatnam in 1956 [4]. The profound 
role of geometric phase in classical as well as quantum physics was recognized 
within the next three decades [5] and it continues to both fascinate researchers [6, 7] 
and find applications [8–11]. 

Optical experiments on plane-wave transmission through a columnar thin film 
[12, 13] and a chiral sculptured thin film [14] have revealed that the geometric phase 
of the transmitted plane wave depends on the morphology of the thin film [15]. 
Thin-film morphology can be architected using a variety of fabrication techniques 
including physical vapor deposition [14, 16], holographic lithography [17], direct 
laser writing [18], electron tomography [19], hydrothermal method [20], and self 
assembly [21, 22]. Each technique may produce thin films with similar plane-wave 
reflectance and transmittance characteristics, but the geometric phase of the reflected 
and/or transmitted plane wave could contain a signature of the fabrication technique. 

1.3 Reusch Piles 

An experimental test of the foregoing proposition requires resources currently 
unavailable to me. So, I chose to establish the rudiments of this proposition 
theoretically. Chiral sculptured thin films may be considered to be finely chiral 
Reusch piles [23]. Conceived in 1869 [24, 25], a Reusch pile is a periodic multilayer 
comprising layers of the same homogeneous, uniaxial dielectric material, such that 
the optic axis in each layer is rotated about the thickness direction (designated to
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be parallel to the z axis of a Cartesian coordinate system) with respect to the optic 
axis in the previous layer by a fixed angle Aξ .. A delightful artistic interpretation of 
Reusch piles is available from the sculpture Segue created by Anne Huibregtse [26]. 

In biophysics literature, Reusch piles are eponymously called Bouligand struc-
tures, following the publication of a 1965 paper [27] wherein Reusch piles in 
arthropod cuticles were described by Bouligand [28]. A century earlier, Reusch 
had been inspired not by biological specimen but by artificial structures that today 
may be called  equichiral Reusch piles, on which optical experiments had been 
conducted by Nörremberg, the immediate predecessor of Reusch as professor of 
physics at the University of Tübingen [24, 25]. The S̆olc fan filters of optics 
[29–32] are also conceptually related to Reusch piles. 

A Reusch pile preferentially reflects light of one circular-polarization state in 
multiple spectral regimes [33, 34], preserving the circular-polarization state of the 
incident plane wave [35]. These spectral regimes, called circular Bragg regimes 
[36], depend on both the number of layers in one period of the Reusch pile and the 
dependencies of the constitutive parameters on the frequency [23]. 

The following classification of Reusch piles was devised in 2004 [23]: Suppose 
that the period P of a Reusch pile is made up of 2q, q ≥ 2., identical layers stacked 
along the z axis. Then the angular offset of the optic axis of a specific layer with 
respect to the optic axis of the previous layer is given by 

.Aξ = h
π

q
, q ∈ {2, 3, 4, . . .} , (4) 

where h = +1. for structural right-handedness and h = −1. for structural left-
handedness. With the assumption that the constitutive parameters are independent of 
frequency (which is an approximation of limited physical validity [37]), the Reusch 
pile shall display two families of circular Bragg regimes. Circular Bragg regimes in 
the first family are conjectured to exist with center wavelengths 

.λ
1;p,q
0 = λ

1;0,q
0

pq + 1
, p ∈ {0, 1, 2, 3, . . .} , q ∈ {2, 3, 4, . . .} , (5) 

whereas circular Bragg regimes in the second family are predicted with center 
wavelengths 

.λ
2;p,q
0 = λ

1;0,q
0

pq + q − 1
, p ∈ {0, 1, 2, 3, . . .} , q ∈ {2, 3, 4, . . .} , (6) 

where λ
1;0,q
0 . depends on the constitutive parameters and period of the Reusch pile 

and normal incidence has been assumed. Equations (5) and (6) will require modifi-
cation for frequency-dependent constitutive parameters [38, 39]. Furthermore, there 
may be circular Bragg regimes that are not captured by the conjectures (5) and (6).
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When h = 1. and the Reusch pile has a sufficiently large number of periods, the 
reflectance of an incident right-circularly polarized (RCP) plane wave is very high 
but that of an incident left-circularly polarized (LCP) plane wave is very low in the 
first family of circular Bragg regimes, whereas the reflectance of an incident LCP 
plane wave is very high, but that of an incident RCP plane wave is very low in the 
second family. When h = −1. and the Reusch pile has a sufficiently large number 
of periods, the reflectance of an incident LCP plane wave is very high, but that of an 
incident RCP plane wave is very low in the first family, whereas the reflectance of 
an incident RCP plane wave is very high, but that of an incident LCP plane wave is 
very low in the second family of circular Bragg regimes. Insertion of central phase 
defects leads to Reusch piles functioning as spectral hole filters [40]. 

Since λ
1;p,2
0 = λ

2;p,2
0 ∀p ., the Reusch pile is classified as equichiral for q =

2.. If  q ≥ 3., the Reusch pile is classified as ambichiral. As q → ∞., the  
Reusch pile is finely chiral with optical reflectance and transmittance characteristics 
similar to those of chiral liquid crystals [41–44] and chiral sculptured thin films 
[14, 45, 46]. A microwave analog of a finely chiral Reusch pile was constructed 
and characterized 50 years ago [47]. Equichiral Reusch piles exhibit the Bragg 
phenomenon without differentiating between LCP and RCP plane waves [23, 48], 
as has been experimentally verified recently [49]. 

Given that λ
1;p+1,q
0 < λ

1;p,q
0 . and λ

2;p+1,q
0 < λ

2;p,q
0 ., it would be arduous 

to experimentally verify the multiplicity of circular Bragg regimes with a single 

Reusch pile if λ
1;0,q
0 . lies in the visible regime. Still, the exhibition of two adjacent 

circular Bragg regimes, the ones for p = 0. from both families with q fixed, has 
been experimentally confirmed with some deviation from Eq. (6) due to frequency 
dependence of the constitutive parameters [23, 50]. 

1.4 Architected Morphology 

With fixed P but increasing q, Reusch piles offer an evolutionary perspective on 
the roles that architected morphology can play in diverse optical phenomena. Such 
studies have been undertaken for transmission-mode optical activity [35, 51, 52], 
circular Bragg phenomenon [50, 53, 54], and surface-wave propagation [55]. In this 
chapter, I deploy Reusch piles to study the evolution of the geometric phases of the 
reflected and transmitted plane waves when a Reusch pile is illuminated by a plane 
wave. 

The 2004 classification [23] of Reusch piles excludes (i) columnar thin films 
[12–14] and (ii) chevronic sculptured thin films [56], because these materials with 
architected morphology do not exhibit the circular Bragg phenomenon. But their 
inclusion is necessary to understand the relationship, or lack thereof, between the 
geometric phase and morphology. Therefore, I augmented Eq. (4) to
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.Aξ = h
2π

Nlyr
, Nlyr ∈ {1, 2, 3, 4, . . .} . (7) 

Whereas Nlyr = 1. for columnar thin films and Nlyr = 2. for chevronic thin films, 
Nlyr = 4. for equichiral Reusch piles and Nlyr ∈ {6, 8, 10, . . .}. for ambichiral Reusch 
piles in the 2004 classification [23]. In addition, Nlyr ∈ {3, 5, 7, . . . }., which were 
not explicitly included in the 2004 classification, are also possible while maintaining 
a full turn of 2π . of the optic axes within the thickness P . 

The conjectures (5) and (6) still apply with q replaced by Nlyr/2., Nlyr ∈
{2, 3, 4, . . .}.. The case of Nlyr = 1. has to be excluded, because a columnar thin 
film lacks periodicity. Equation (5) indicates that 

.
λ

1;p,Nlyr/2
0

λ
1;0,Nlyr/2
0

∈

⎧

⎪

⎪

⎪
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⎪

⎪

⎪

⎪
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⎩
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2 , 1

3 , 1
4 , . . .

l
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5 , 2

8 , 2
11 , . . .

l

,
l

1, 1
3 , 1

5 , 1
7 , . . .

l

,
l

1, 2
7 , 2

12 , 2
17 , . . .

l

,
l

1, 1
4 , 1

7 , 1
10 , . . .

l

,

Nlyr =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2

3

4

5

6

, (8) 

and 

.
λ

2;p,Nlyr/2
0

λ
1;0,Nlyr/2
0

∈

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪
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⎪

⎨
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⎪

⎪

⎪

⎩

l

∞, 1, 1
2 , 1

3 , . . .
l

,
l

2, 2
4 , 2

7 , 2
10 , . . .

l

,
l

1, 1
3 , 1

5 , 1
7 , . . .

l

,
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2
3 , 2

8 , 2
13 , 2

18 , . . .
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,
l

1
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5 , 1
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11 , . . .
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,
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⎪
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⎪

⎪

⎪

⎪

⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2

3

4

5

6

. (9) 

Thus, the largest finite value of λ
l;p,Nlyr/2
0 ., l ∈ {1, 2}., is λ

1;0,Nlyr/2
0 . with one 

exception: λ
2;0,3/2
0 = 2λ

1;0,3/2
0 .. Note that λ

1;p,1
0 = λ

2;p+1,1
0 . for chevronic thin 

films and λ
1;p,2
0 = λ

2;p,2
0 . for equichiral Reusch piles, both instances of the two 

families of circular Bragg regimes not being distinct from each other in their 
center wavelengths. The sequences in conjectures (8) and (9) will change when the 
frequency dependence of the constitutive parameters cannot be ignored. 

This chapter is organized as follows. Section 2 provides the theoretical frame-
work to calculate the geometric phase of the reflected/transmitted plane wave in 
relation to the incident plane wave. Numerical results are presented and discussed 
in Sect. 3, and the chapter ends with key conclusions in Sect. 4. An exp(−iωt). 

dependence on time t is implicit, where ω. as the angular frequency. With ε0 . and 
μ0 ., respectively, denoting the permittivity and permeability of free space, the free-
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space wavenumber is denoted by k0 = ω
√

ε0μ0 . and λ0 = 2π/k0 . is the free-space 
wavelength. The Cartesian coordinate system (x, y, z). is adopted. Vectors are in 
boldface, and unit vectors are additionally decorated by a caret on top. Dyadics are 
double underlined. Column vectors are underlined and enclosed in square brackets. 
Matrixes are double underlined and enclosed in square brackets. 

2 Theory 

2.1 Relative Permittivity Dyadic 

The Reusch pile is taken to occupy the region 0 < z < NP ., where N ∈
{1, 2, 3, . . . }. is the number of periods, and the relative permittivity dyadic 

.εrel(z + P) = εrel(z) , 0 < z < (N − 1)P , (10) 

is therefore periodic. 
The reference unit cell 0 < z < P . is subdivided into Nlyr . layers. The n-th layer, 

n ∈
l

1, 2, . . . , Nlyr
l

., is delimited by the planes z = zn−1 . and z = zn ., where 

.zm = m
P

Nlyr
, m ∈

l

0, 1, 2, . . . , Nlyr
l

. (11) 

The relative permittivity dyadic in the n-th layer of the reference unit cell is given 
by 

. εrel(z) = Z(h; n,Nlyr) • Y (χ) •
l

εaẑẑ + εbx̂x̂ + εcŷŷ
l

• Y−1(χ) • Z−1(h; n,Nlyr) ,

zn−1 < z < zn , n ∈
l

1, 2, . . . , Nlyr
l

. (12) 

The frequency-dependent relative permittivity scalars εa ., εb ., and εc . capture the 
orthorhombicity [14] of each layer. The tilt dyadic 

.Y (χ) = ŷŷ +
l

x̂x̂ + ẑẑ
l

cos χ +
l

ẑx̂ − x̂ẑ
l

sin χ (13) 

contains χ ∈ [0, π/2]. as an angle of inclination with respect to the xy plane. The 
structural handedness is captured by the rotation dyadic 

. Z(h; n,Nlyr) = ẑẑ +
l

x̂x̂ + ŷŷ
l

cos

l

(n − 1)h
2π

Nlyr

l

+
l

ŷx̂ − x̂ŷ
l

sin

l

(n − 1)h
2π

Nyr

l

, n ∈
l

1, 2, . . . , Nlyr
l

. (14)
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Examination of Eq. (12) reveals the absence of periodicity only for Nlyr = 1.. 
However, the structural period is not always P for all values of χ .. The structural 
period is P for χ ∈ (0, π/2)., but  P/2. for χ ∈ {0, π/2}.. This distinction has been 
partially noted earlier [57] for continuously chiral materials (i.e., in the limit Nlyr →
∞.). 

Examination of Eq. (12) reveals also the absence of structural handedness for 
Nlyr ∈ {1, 2}.. Additionally, structural handedness is absent for Nlyr = 4. provided 
that χ ∈ {0, π/2}.. 

2.2 Boundary-Value Problem 

The half-space z < 0. is the region of incidence and reflection, while the half-space 
z > L. is the region of transmission. A plane wave, propagating in the half–space 
z ≤ 0. at an angle θinc ∈ [0, π/2). with respect to the z axis and at an angle ψ ∈
[0, 2π). with respect to the x axis in the xy plane, is incident on the Reusch pile. The 
electric field phasor associated with the incident plane wave is represented as [14] 

. Einc(r) =
l

(is − p+)√
2

aL − (is + p+)√
2

aR

l

exp [iκ (x cos ψ + y sin ψ)]

× exp (ik0zcos θinc). (15a) 

=
l

ass + app+
l

exp [iκ (x cos ψ + y sin ψ)] exp (ik0zcos θinc) , 

z <  0 , (15b) 

where 

.

κ = k0 sin θinc

s = −x̂ sin ψ + ŷ cos ψ

p± = ∓
l

x̂ cos ψ + ŷ sin ψ
l

cos θinc + ẑ sin θinc

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (16) 

The amplitudes of the LCP and the RCP components of the incident plane wave, 
denoted by aL . and aR ., respectively, in Eq. (15a) are assumed to be known. 
Alternatively, as . and ap . are the known amplitudes of the perpendicular- and parallel-
polarized components, respectively, in Eq. (15b). 

The electric field phasor of the reflected plane wave is expressed as 

. Eref(r) = −
l

(is − p−)√
2

rL − (is + p−)√
2

rR

l

exp [iκ (x cos ψ + y sin ψ)]

× exp (−ik0z cos θinc) . (17a) 

=
l

rss + rpp−
l

exp [iκ (x cos ψ + y sin ψ)] exp (−ik0z cos θinc) ,(17b) 

z <  0 ,
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and the electric field phasor of the transmitted plane wave is represented as 

. Etr(r) =
l

(is − p+)√
2

tL − (is + p+)√
2

tR

l

exp [iκ (x cos ψ + y sin ψ)]

× exp [ik0(z − NP) cos θinc] , . (18a) 

=
l

tss + tpp+
l

exp [iκ (x cos ψ + y sin ψ)] 

× exp [ik0(z − NP) cos θinc] , z  >  NP  . (18b) 

The reflection amplitudes rL . and rR . as well as the transmission amplitudes tL . 

and tR . (equivalently, rs ., rp ., ts ., and tp .) are unknown and require the solution of a 
boundary-value problem. The most straightforward technique requires the use of 
the 4 ×.4 transfer-matrix method, whose details are available elsewhere [14, 58]. 
Thereafter, the total reflectance 

.R = |rL|2 + |rR|2
|aL|2 + |aR|2 = |rs|2 + |rp|2

|as|2 + |ap|2
(19a) 

and the total transmittance 

.T = |tL|2 + |tR|2
|aL|2 + |aR|2 = |ts|2 + |tp|2

|as|2 + |ap|2
(19b) 

can be calculated. 

2.3 Poincaré Spinors 

The Stokes parameters of the incident plane wave are given by [2] 

.

sinc
0 = |aL|2 + |aR|2 = |as|2 + |ap|2

sinc
1 = 2 Re

l

aL a∗
R

l

= |ap|2 − |as|2

sinc
2 = 2 Im

l

aL a∗
R

l

= 2 Re
l

as a∗
p

l

sinc
3 = |aR|2 − |aL|2 = 2 Im

l

as a∗
p

l

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

, (20) 

where ∗ . denotes the complex conjugate. The angles αinc
. and β inc

. can be calculated 

using the foregoing equations in Eqs. (1), followed by the Poincaré spinor
l

φinc
l

. 

from Eq. (2).
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The Stokes parameters of the reflected plane wave are given by [2] 

.

sref
0 = |rL|2 + |rR|2 = |rs|2 + |rp|2

sref
1 = 2 Re

l

rL r∗
R

l

= |rp|2 − |rs|2

sref
2 = 2 Im

l

rL r∗
R

l

= 2 Re
l

rs r∗
p

l

sref
3 = |rR|2 − |rL|2 = 2 Im

l

rs r∗
p

l

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

, (21) 

from which the angles αref
. and βref

. as well as the Poincaré spinor
l

φref
l

. can 

be calculated using Eqs. (1) and (2). Calculation of the Stokes parameters of the 

transmitted plane wave, the angles αtr
. and β tr

., and the Poincaré spinor
l

φtr
l

. follows 

the same route. 

3 Numerical Results 

Calculations were made of the total reflectance Rl ., total transmittance Tl ., reflection-
mode geometric phase oref

l ., and transmission-mode geometric phase otr
l ., l ∈

{s, p,R,L}.. The subscripts in these quantities indicate the polarization state of 
the incident plane wave: perpendicular (s), parallel (p), left-circular (L), or right-
circular (R). 

In order to incorporate causal frequency-dependent constitutive parameters 
[59–61] in calculations, single-resonance Lorentzian functions were assumed for 
εa ., εb ., and εc . as follows [62]: 

.εl(λ0) = 1 + pl

1 +
l

1
Nl

− i
λl

λ0

l2
, l ∈ {a, b, c} . (22) 

The oscillator strengths are determined by the values of pl ., λl(1 + N−2
l )−1/2

. are 
the resonance wavelengths, and λl/Nl . are the resonance linewidths. The parameters 
used for the theoretical results reported here are as follows: pa = 2.3., pb = 3.0., 
pc = 2.2., λa = λc = 260.nm, λb = 270.nm, and Na = Nb = Nc = 130.. 
Furthermore, χ = 37◦

., N = 15., and P = 300.nm were fixed. Calculations were 
made for primarily for λ0 ∈ [400, 800].nm. 

Note that oref
R = otr

R ≡ 0. in both Figs. 2 and 3, because of the structure of
l

φinc
l

. 

for an incident RCP plane wave [63, 64]. The other six geometric phases oref
l . and 

otr
l ., l ∈ {s, p, L}., are generally non-zero, and their spectral dependencies may not 

follow those of the corresponding total remittances defined in Eqs. (19a) and (19b).
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Fig. 2 Spectrums of Rl ., Tl ., oref
l ., and  otr

l ., l ∈ {s, p,R,L}., for θinc ∈ [0◦, 90◦)., when Nlyr = 1., 
h = ±1., N = 15., P = 300.nm, and ψ = 0◦

. 

3.1 Columnar Thin Film (Nlyr = 1.) 

Figure 2 presents the spectrums of Rl ., Tl ., oref
l ., and otr

l ., l ∈ {s, p,R,L}., for  
θinc ∈ [0◦, 90◦). and ψ = 0◦

.. Figure 3 presents the analogous spectrums for 
θinc = 0◦

. and ψ ∈ [0◦, 360◦).. As the Reusch pile reduces to a single columnar thin 
film of thickness NP  when Nlyr = 1., no Bragg phenomenon can be exhibited, the 
columnar thin film being effectively a homogeneous biaxial-dielectric continuum 
[12, 65] whose relative permittivity dyadic does not depend on h. 

In Figs. 2 and 3, the total linear remittances (i.e., Rs ., Rp ., Ts ., and Tp .) depend on the 
polarization state of the incident linearly polarized plane wave, but the total circular 
remittances (i.e., RR ., RL ., TR ., and TL .) do not depend on the polarization state of 
the incident circularly polarized plane wave. The plots of all eight quantities show 
Fabry–Perot resonances [66], as expected from a homogeneous dielectric slab. The
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Fig. 3 Spectrums of Rl ., Tl ., oref
l ., and  otr

l ., l ∈ {s, p,R,L}., for ψ ∈ [0◦, 360◦)., when Nlyr = 1., 
h = ±1., N = 15., P = 300.nm, and θinc = 0◦

. 

spectral dependences of oref
l .do not follow those of Rl ., and the spectral dependences 

of otr
l . do not follow those of Tl ., l ∈ {s, p, L}.. 

3.2 Chevronic Thin Film (Nlyr = 2.) 

Figure 4 presents the spectrums of Rl ., Tl ., oref
l ., and otr

l ., l ∈ {s, p,R,L}., for  θinc ∈
[0◦, 90◦). and ψ = 0◦

., and Fig. 5 for θinc = 0◦
. and ψ ∈ [0◦, 360◦).. Neither the total 

remittances nor the corresponding geometric phases depend on whether h = 1. or 
h = −1. in these two figures, just as in Figs. 2 and 3, because chevronic thin films 
lack structural handedness. 

No trace of the Bragg phenomenon is evident in the plots of the total remittances 
in Figs. 4 and 5. There is no doubt that the Reusch pile is structurally periodic for
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Fig. 4 Spectrums of Rl ., Tl ., oref
l ., and  otr

l ., l ∈ {s, p,R,L}., for θinc ∈ [0◦, 90◦)., when Nlyr = 2., 
h = ±1., N = 15., P = 300.nm, and ψ = 0◦

. 

Nlyr = 2., but that structural periodicity does not translate into electromagnetic 
periodicity for all incidence conditions. Indeed for normal incidence, the interface 
z = P/2. in the reference unit cell is reflectionless [67, 68]. 

Elsewhere, theoretical research has shown that the Bragg phenomenon is not 
exhibited by a chevronic thin film for normal and near-normal incidence, which 
conclusion has been validated experimentally [56]. It is difficult to distinguish 
between the total remittance plots for Nlyr = 1. (Figs. 2 and 3) and Nlyr = 2. 

(Figs. 4 and 5). Theory also indicates that vestigial manifestation of the Bragg 
phenomenon is possible for highly oblique incidence [56], but a clear signature 
cannot be discerned in Fig. 4. 

The geometric phases oref
l . and otr

l ., l ∈ {s, p, L}., are not identically zero in 
Figs. 4 and 5. Furthermore, although the total remittance plots in Fig. 2 are virtually 
indistinguishable from their counterparts in Fig. 4, the dependences of oref

s,p ., otr
p ., 

and oref
L . on θinc . in those two figures show clear differences. These differences
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Fig. 5 Spectrums of Rl ., Tl ., oref
l ., and  otr

l ., l ∈ {s, p,R,L}., for ψ ∈ [0◦, 360◦)., when Nlyr = 2., 
h = ±1., N = 15., P = 300.nm, and θinc = 0◦

. 

indicate that the geometric phases of the reflected and the transmitted plane waves 
are affected by morphology much more than the total remittances, this observation 
having been previously made only for the geometric phase of the transmitted plane 
wave [63, 64]. Note, however, that the plots of oref

s,p ., otr
p ., and oref

L . in Figs. 3 and 5 are 
identical, because the interface z = P/2. in the middle of the reference unit cell of 
the chevronic thin film is electromagnetically inconsequential for normal incidence 
[67, 68]. 

3.3 Ambichiral Reusch Pile (Nlyr = 3.) 

A Reusch pile with Nlyr = 3. possesses both structural handedness and structural 
periodicity. Although this Reusch pile was not included in the 2004 classification
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Fig. 6 Spectrums of Rl ., Tl ., oref
l ., and  otr

l ., l ∈ {s, p,R,L}., for θinc ∈ [0◦, 90◦)., when Nlyr = 3., 
h = 1., N = 15., P = 300.nm, and ψ = 0◦

. 

[23], it should be considered as ambichiral. Figure 6 presents the chosen spectrums 
for θinc ∈ [0◦, 90◦). and ψ = 0◦

., and Fig. 7 for θinc = 0◦
. and ψ ∈ [0◦, 360◦)., when 

h = 1.. The Bragg phenomenon is clearly evident as a deep blue trough in the plots 
of TR . and a corresponding ridge in the plots of RR .. This trough/ridge is centered at 
λ0 = 602. nm for θinc = 0◦

. and it blueshifts with more oblique incidence [45]. The 
absence of analogous features in the plots of TL . and RL . supports the conclusion that 
this is a circular Bragg phenomenon. However, in comparison to a chiral sculptured 
thin film [45], the trough is present in the plots of both TR . and TL ., and the ridge in 
the plots of both RR . and RL ., for highly oblique incidence. 

Analogous spectrums for h = −1. are presented in Figs. 8 and 9. The plots of 
{TR, RR, TL, RL}. for fixed ψ . are interchanged with those of {TL, RL, TR, RR}. for 
2π − ψ ., in comparison to Figs. 6 and 7; in other words,
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Fig. 7 Spectrums of Rl ., Tl ., oref
l ., and  otr

l ., l ∈ {s, p,R,L}., for ψ ∈ [0◦, 360◦)., when Nlyr = 3., 
h = 1., N = 15., P = 300.nm, and θinc = 0◦

. 

.

RR(h, ψ) = RL(−h, 2π − ψ)

RL(h, ψ) = RR(−h, 2π − ψ)

TR(h, ψ) = TL(−h, 2π − ψ)

TL(h, ψ) = TR(−h, 2π − ψ)

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

. (23) 

Since a linearly polarized plane wave can be decomposed into an RCP plane 
wave and an LCP plane wave, signatures of the circular Bragg phenomenon are also 
to be found in the plots of linear remittances in Figs. 6, 7, 8, and 9. The following 
symmetries are exhibited by the linear remittances:
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Fig. 8 Spectrums of Rl ., Tl ., oref
l ., and  otr

l ., l ∈ {s, p,R,L}., for θinc ∈ [0◦, 90◦)., when Nlyr = 3., 
h = −1., N = 15., P = 300.nm, and ψ = 0◦

. 

.

Rs(h, ψ) = Rs(−h, 2π − ψ)

Rp(h, ψ) = Rp(−h, 2π − ψ)

Ts(h, ψ) = Ts(−h, 2π − ψ)

Tp(h, ψ) = Tp(−h, 2π − ψ)

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

. (24) 

No symmetries are evident in the plots of geometric phases in Figs. 6, 7, 8, and 
9, except that oref

R = otr
R ≡ 0. by virtue of the structure of the Poincaré spinor of an 

RCP plane wave [63, 64]. The spectrums of oref
l . and otr

l ., l ∈ {s, p, L}., are greatly 
affected when the structural handedness is reversed. 

In order to confirm that Nlyr = 3. provides the exceptional case λ
2;0,Nlyr/2
0 >

λ
1;0,Nlyr/2
0 ., calculations were also made for λ0 . extending into the near-infrared 

spectral regime. With θinc = 0◦
. and ψ = 0◦

. fixed, (i) Fig. 10 presents the spectrums
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Fig. 9 Spectrums of Rl ., Tl ., oref
l ., and  otr

l ., l ∈ {s, p,R,L}., for ψ ∈ [0◦, 360◦)., when Nlyr = 3., 
h = −1., N = 15., P = 300.nm, and θinc = 0◦

. 

of Rl ., Tl ., oref
l ., and otr

l ., l ∈ {s, p,R,L}., for  h = 1., and Fig. 11 presents the 
same spectrums for h = −1.. The remittance spectrums in both figures clearly show 

two circular Bragg regimes. The first is centered at λ
1;0,3/2
0 = 602. nm, exactly as 

in Figs. 6, 7, 8, and 9, and it belongs to the first family described in Sect. 1.3. The  

second is centered at λ2;0,3/2
0 = 1135.nm and belongs to the second family described 

in Sect. 1.3. Note that λ
2;0,3/2
0 . differs from 2λ

1;0,3/2
0 . predicted by Eq. (9) because the 

relative permittivity scalars in Eq. (22) are frequency dependent. 
Importantly, the spectral variations of oref

l . and otr
l ., l ∈ {s, p, L}., are different in 

the two circular Bragg regimes in Figs. 10 and 11.
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Fig. 10 Spectrums of Rl ., Tl ., oref
l ., and  otr

l ., l ∈ {s, p,R,L}., for θinc = 0◦
. and ψ = 0◦

., when  
Nlyr = 3., h = 1., N = 15., and P = 300.nm 

3.4 Equichiral Reusch Pile (Nlyr = 4.) 

The prefix equi in the classification equichiral is justified for a Reusch pile with 

Nlyr = 4., since λ
1;p,Nlyr/2
0 = λ

2;p,Nlyr/2
0 . ∀p . when Nlyr = 4.. The same Reusch pile is 

also structurally handed (with period P ), so that the suffix chiral in the classification 
equichiral is also justified. However, there is a notable exception: the period equals 
P/2., and there is no structural handedness when χ ∈ {0, π/2}..
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Fig. 11 Spectrums of Rl ., Tl ., oref
l ., and  otr

l ., l ∈ {s, p,R,L}., for θinc = 0◦
. and ψ = 0◦

., when  
Nlyr = 3., h = −1., N = 15., and P = 300.nm 

Figure 12 presents the chosen spectrums for θinc ∈ [0◦, 90◦). and ψ = 0◦
., and 

Fig. 13 for θinc = 0◦
. and ψ ∈ [0◦, 360◦)., when h = 1.. Figures 14 and 15 are 

the counterparts of those two figures for h = −1.. Calculations show that Eqs. (23) 
and (24) hold for Nlyr = 4.. 

The Bragg phenomenon is clearly evident as a deep blue trough in the plots 
of both linear and both circular transmittances, and as a corresponding ridge in 
the plots of both linear and both circular reflectances, regardless of the value of 
h ∈ {−1, 1}.. These features are centered about λ0 = 600. nm for θinc = 0◦

. and 
blueshift with more oblique incidence. This Reusch pile exhibits a polarization-
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Fig. 12 Spectrums of Rl ., Tl ., oref
l ., and  otr

l ., l ∈ {s, p,R,L}., for θinc ∈ [0◦, 90◦)., when Nlyr = 4., 
h = 1., N = 15., P = 300.nm, and ψ = 0◦

. 

universal bandgap that can be tuned by adjusting the angle of incidence θinc ., as has 
been verified experimentally [49]. 

The plots of oref
l . and otr

l ., l ∈ {s, p, L}., in general, contain clear evidence of 

the polarization-universal bandgap. However, whereas oref
l . and otr

l ., l ∈ {s, p}., are  

greatly affected when the structural handedness is reversed, oref
L .and otr

L .are affected 
very little by the same reversal. 

3.5 Ambichiral and Finely Chiral Reusch Piles (Nlyr ≥ 5.) 

The optical response characteristics for Nlyr ≥ 5. are similar to those for Nlyr =
3., except that Eq. (9) predicts λ

2;0,Nlyr/2
0 /λ

1;0,Nlyr/2
0 > 1. for Nlyr = 3. but 

λ
2;0,Nlyr/2
0 /λ

1;0,Nlyr/2
0 < 1. for Nlyr ≥ 5..
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Fig. 13 Spectrums of Rl ., Tl ., oref
l ., and  otr

l ., l ∈ {s, p,R,L}., for ψ ∈ [0◦, 360◦)., when Nlyr = 4., 
h = 1., N = 15., P = 300.nm, and θinc = 0◦

. 

Figure 16 presents the chosen spectrums for θinc ∈ [0◦, 90◦). and ψ = 0◦
., and 

Fig. 17 for θinc = 0◦
. and ψ ∈ [0◦, 360◦)., when Nlyr = 5. and h = 1.. Analogous 

spectrums for Nlyr = 5. and h = −1. are presented in Figs. 18 and 19. Regardless 
of whether h = 1. or h = −1., two distinct circular Bragg regimes are evident in 

these plots. Whereas λ
1;0,5/2
0 = 602. nm for θinc = 0◦

., we have λ
2;0,5/2
0 = 439. nm 

for normal incidence, so that λ
2;0,5/2
0 /λ

1;0,5/2
0 = 0.729.. This ratio is smaller than 

0.667. predicted by Eq. (9), because the relative permittivity scalars in Eq. (22) are  
frequency dependent. 

Equations (23) and (24) hold, but similar symmetries are not evident for the 
non-zero geometric phases in Figs. 16, 17, 18, and 19. Furthermore, the spectral 
variations of oref

l . and otr
l ., l ∈ {s, p, L}., are different in the two circular Bragg 

regimes in these figures.
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Fig. 14 Spectrums of Rl ., Tl ., oref
l ., and  otr

l ., l ∈ {s, p,R,L}., for θinc ∈ [0◦, 90◦)., when Nlyr = 4., 
h = −1., N = 15., P = 300.nm, and ψ = 0◦

. 

The Reusch pile becomes finely chiral and λ
2;0,Nlyr/2
0 . blueshifts ever farther from 

λ
1;0,Nlyr/2
0 ., as  Nlyr . increases significantly beyond 5, and the circular total remittance 

spectrums begin to converge [53]. A similar convergence is also exhibited by the 
linear total remittance spectrums. Spectrums of the non-zero geometric phases also 
appear to converge, except in the vicinity of a circular Bragg regime. This becomes 
clear from examining the plots of otr

L . for ψ = 0◦
., h = 1. and Nlyr ∈ [1, 50]. in 

Fig. 20, wherein the choice of otr
L . over other non-zero geometric phases takes into 

account the fact that TL . is high inside the circular Bragg regime with λ
1;0,Nlyr/2
0 . as 

its center wavelength for h = 1.. The same conclusion emerges even more strongly 
from examining the plots of oref

L . for ψ = 0◦
., h = −1., and Nlyr ∈ [1, 50]. in Fig. 21, 

the choice of oref
L . over other non-zero geometric phases taking into account that RL . 

is high inside the circular Bragg regime with λ
1;0,Nlyr/2
0 . as its center wavelength for 

h = −1..
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Fig. 15 Spectrums of Rl ., Tl ., oref
l ., and  otr

l ., l ∈ {s, p,R,L}., for ψ ∈ [0◦, 360◦)., when Nlyr = 4., 
h = −1., N = 15., P = 300.nm, and θinc = 0◦

. 

4 Concluding Remarks 

Figures 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19 provide 
an evolutionary perspective on the nanoscale architected morphology of Reusch 
piles. Total remittances and geometric phases were presented as functions of the 
free-space wavelength and the direction of plane-wave incidence for fixed thickness 
NP = 4500. nm with N = 15.. As  Nlyr . increased from unity, first the Reusch 
pile became structurally periodic (for Nlyr ≥ 2.) and then structurally handed (for 
Nlyr ≥ 3.). The layer thickness P/Nlyr . continued to shrink with increasing Nlyr ., 
which can be implemented quite straightforwardly with chiral sculptured thin films 
[23, 50, 69–72]. Total-remittance values in excess of 0.01. began to converge correct 
to four decimal digits, as Nlyr . increased beyond 10 (results not shown).
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Fig. 16 Spectrums of Rl ., Tl ., oref
l ., and  otr

l ., l ∈ {s, p,R,L}., for θinc ∈ [0◦, 90◦)., when Nlyr = 5., 
h = 1., N = 15., P = 300.nm, and ψ = 0◦

. 

But that did not turn out to be completely true for the geometric phases. With 
otr

L . selected for h = 1. because TL . has a substantial magnitude inside the circular 

Bragg regime with λ
1;0,Nlyr/2
0 . as its center wavelength, and oref

L . selected for h = −1. 

because RL . has a substantial magnitude inside the same circular Bragg regime, 
to facilitate measurements eventually, Figs. 20 and 21 show the emergence of new 
features in the spectrums of non-zero geometric phases on the short-wavelength side 
of the chosen circular Bragg regime. Since adjacent layers in a Reusch pile with high 
Nlyr . are, at least theoretically identical except for a slight twist about the z axis, the 
foregoing observation implies that the geometric phases are sensitive to nanoscale 
morphological changes as a thin film grows. Therefore, geometric phases could 
contain signatures of nanoscale morphological details that would depend on the 
fabrication technique. Careful experiments are necessary to establish this possibility.
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Fig. 17 Spectrums of Rl ., Tl ., oref
l ., and  otr

l ., l ∈ {s, p,R,L}., for ψ ∈ [0◦, 360◦)., when Nlyr = 5., 
h = 1., N = 15., P = 300.nm, and θinc = 0◦

.
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Fig. 18 Spectrums of Rl ., Tl ., oref
l ., and  otr

l ., l ∈ {s, p,R,L}., for θinc ∈ [0◦, 90◦)., when Nlyr = 5., 
h = −1., N = 15., P = 300.nm, and ψ = 0◦

.
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Fig. 19 Spectrums of Rl ., Tl ., oref
l ., and  otr

l ., l ∈ {s, p,R,L}., for ψ ∈ [0◦, 360◦)., when Nlyr = 5., 
h = −1., N = 15., P = 300.nm, and θinc = 0◦

.
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Fig. 20 Spectrums of otr
L . for θinc ∈ [0◦, 90◦). and Nlyr ∈ {1, 2, 3, 4, 5, 6, 8, 10, 20, 50}., when  

h = 1., N = 15., P = 300.nm, and ψ = 0◦
. 

Fig. 21 Spectrums of oref
L . for θinc ∈ [0◦, 90◦). and Nlyr ∈ {1, 2, 3, 4, 5, 6, 8, 10, 20, 50}., when  

h = −1., N = 15., P = 300. nm, and ψ = 0◦
. 
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UWVF: A Trefftz Numerical Method for 

Maxwell’s Equations 

Timo Lähivaara , William F. Hall, Matti Malinen, Dale Ota, 

Vijaya Shankar, and Peter Monk 

1 Introduction 

In 1926, Erich Trefftz [1] proposed to use a superposition of known solutions to a 

linear partial differential equation to approximate the true solution. In recent years, 

the term “Trefftz method” now indicates that an approximation scheme (which 

might be very different from Trefftz’s original proposal) uses exact solutions as part 

of the solution procedure [2]. This chapter will present a discussion of a particular 

Trefftz-based solution method for approximating the time harmonic Maxwell’s 

equations on a finite element mesh. We will use our Trefftz code ParMax to provide 

numerical results, illustrate some of the features of mesh-based Trefftz methods for 

Maxwell’s equations, and comment on possible improvements and extensions. 

In the context of computational electromagnetism, Trefftz methods have made 

significant contributions. An example is the T-matrix method of Waterman [3–5] 

for solving a scattering problem in the exterior of a smooth bounded scatterer. 

This uses a superposition of solutions of the exterior problem in terms of Hankel 

functions to approximate the scatterered wave. A variational technique is used 
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to impose the perfect electrically conducting (PEC) boundary condition on the 

scatter and determine the coefficients in this expansion. The T-matrix method is 

a highly efficient numerical scheme provided the solution can be continued into 

the interior of the scatter such that the special function expansion can converge 

rapidly. However, the method cannot easily be modified to provide an efficient 

approximation of the solution when corner and edge effects introduce singularities. 

One way to take into account corner and edge effects (and inhomogeneous 

media) is to couple a Trefftz method for the exterior domain to the finite element 

method in a suitable region containing the scatterer. For example, Casati et al. [6] 

use the Method of Auxiliary Sources to approximate the field scattered by a bounded 

scatterer outside a smooth artificial boundary containing the scatterer. The field in 

the exterior domain is approximated as a weighted sum of the fields due to finitely 

many point sources located inside the artificial boundary. This exterior field is 

coupled to a finite element method solution that is used in the interior of the artificial 

boundary. Extensive numerical experiments in [6] show the good performance of 

the method. Issues arise concerning the placement of the auxiliary sources if the 

artificial boundary has regions of high curvature (see for example [7] in 2D), and 

this is perhaps the main drawback of the method. In addition, as currently reported, 

the method uses a direct solver for the linear system resulting from the finite 

element and Trefftz discretization with the attendant need for large requirements 

for computer memory. This is due to the fact that the Method of Auxiliary Sources 

couples all finite element unknowns on the artificial boundary (in the same way as 

would a Dirichlet-to-Neumann approach). 

Another way to ameliorate the slow convergence of Trefftz methods near 

singularities, while retaining their advantages in approximating fields in free space 

and near smooth boundaries, is to use local Trefftz methods on geometric elements 

in a finite element style grid. The Trefftz functions on each element are then coupled 

using a variational formulation to enforce approximate transmission conditions. One 

obvious way to couple the fields is to use a least squares method to minimize the 

jump in the tangential electric and magnetic fields on each face in the mesh [8]. 

The resulting matrix problem is symmetric positive definite, a preconditioner is 

developed, and the method is also proved to converge [8]. 

An alternative approach that we have followed is the Ultra Weak Variational 

Formulation (UWVF) of Maxwell’s equations due to Cessenat and Déspres [9, 10]. 

In this chapter, we shall give an introduction to the UWVF (see Sect. 2). The 

classical UWVF uses a tetrahedral finite element grid. On each element in the grid, 

the solution of the adjoint Maxwell system is approximated by a superposition of 

plane waves propagating in various directions. The amplitude of the plane wave 

solutions is found by solving a global sparse matrix problem resulting from a natural 

variational formulation. An advantage is that the resulting linear system can be 

solved simply by using the bi-conjugate gradient method (BiCG). We have found 

that the UWVF is efficient for approximating solutions of Maxwell’s equations for a 

wide range of test problems. As the frequency of the electromagnetic field increases, 

the UWVF becomes more efficient than edge finite element methods [11].
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It was realized, first for the Helmholtz equation [12, 13] and later for Maxwell’s 

equations, that the UWVF is a special case of a Trefftz-discontinuous Galerkin 

(Trefftz-DG) method provided the scattering medium is lossless. In this special 

case, it is then possible to use techniques from the theory of discontinuous Galerkin 

methods, together with approximation error estimates for plane wave expansions to 

derive convergence results for the Trefftz-DG method and hence for the UWVF [14]. 

That analysis proves that Trefftz methods of this type converge, even if the solution 

is not analytic, as the mesh size decreases. In terms of the mesh size, the order of the 

approximation increases as the number of plane waves per element increases (with 

an upper limit depending on the smoothness of the solution). For an overview of the 

techniques used in that analysis, and for more details of the history of Trefftz-DG 

methods for the related Helmholtz problem, see [15]. 

The Trefftz-DG approach to solving Maxwell’s equations has the advantage 

compared to UWVF of introducing extra parameters that can be tuned to improve 

the performance of the algorithm. In [16], Hiptmair et al. suggest using mesh-

dependent coefficients to handle grid refinement near singularities. However, in their 

interesting paper on adaptivity for Trefftz-DG schemes for the Helmholtz equation 

(including directional adaptivity), Congreve et al. [17] use a constant choice of 

the Trefftz-DG parameters giving a scheme equivalent to the UWVF, and state 

that they do not observe quantitative differences using mesh-dependent parameters. 

Examples in that paper show how the Trefftz-DG scheme can approximate singular 

solutions. 

We have developed an MPI-parallel implementation of the UWVF for Maxwell’s 

equations called ParMax with the goal of providing a flexible solver for electri-

cally large problems compared to those usually solved using the finite element 

method [11, 15]. Extensions to the original UWVF include: support for the Perfectly 

Matched Layer (PML) absorbing medium [15], elements with curved boundaries, 

more general element types, a reduced memory version, and the inclusion of a 

model for resistive sheets [11]. Besides outlining the general UWVF approach, this 

chapter describes the continued development of ParMax by discussing support for a 

new element type: pyramids. These elements are useful for joining regions covered 

by tetrahedral elements to those covered with prismatic or hexahedral elements. 

We also examine further the use of polynomial mappings to approximate smooth 

boundaries and in particular the use of quartic fits to smooth boundaries. 

In our recent paper [11], the majority of the examples are for scattering by 

a spherical scatterer (penetrable or PEC) because this case has an exact series 

solution for comparison. However, the sphere is a very special case having a smooth 

boundary with constant curvature, which allows the full approximation properties of 

the Trefftz functions and a simple mesh density criterion. Another example in that 

paper, scattering from aircraft, did not have an analytic solution for comparison. To 

continue our study, in this chapter, we consider the approximation of the far-field 

pattern for an almond-shaped scatterer. This scatterer has regions of high curvature 

and a sharp tip that can create a singularity in the electromagnetic field as the tip is 

approached. We demonstrate that the UWVF can be used for this test problem and 

compare the results to published measured data [18].
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The remainder of this chapter is as follows. In Sect. 2, we briefly recall the 

classical UWVF for Maxwell’s equations, discuss the discrete UWVF using plane 

wave bases, comment on the conditioning of the resulting matrix problem, and 

revisit the implementation of the PML. In Sect. 3, we show how we integrated 

pyramidal elements into the code and provide a numerical example of their use. In 

Sect. 4, we discuss how ParMax can approximate smooth surfaces, and in Sect. 4.1, 

we first study surface approximation for a PEC sphere. Then we in Sect. 4.2 give 

results for a dielectric (penetrable) sphere. In Sect. 5, we move on to provide results 

for a perfectly conducting almond having the same shape as the NASA almond [19], 

but comparing to published data from [18]. We end with some comments and a 

conclusion. 

All the finite element meshes in this chapter were generated by COMSOL 

Multiphysics. Computations are run on the parallel cluster computer Puhti at 

the CSC—IT Center for Science Ltd, Finland. A detailed description of this 

supercomputer can be found on the CSC’s website [20]. 

Concerning notation, i =
√

−1. and bold face quantities represent vectors. We 

assume exp(−iωt). dependence on time t , where ω . is the angular frequency of the 

radiation. For a suitable surface S ⊂ R
3
. with normal ν ., we recall the definition of 

the space of square integrable tangential vector fields 

. L2
T (S) = {u ∈ (L2(S))3 | u · ν = 0}

having norm denoted by ll · ll2,S .. 

2 The UWVF for Maxwell’s Equations 

We are concerned with solving the linear, time-harmonic Maxwell system for 

scattering applications. To truncate the unbounded computational domain typical 

for such problems, we usually use a PML. However, to simplify the presentation of 

the UWVF, we first describe the UWVF for a boundary value problem on a bounded 

domain (see Sect. 2.1). Later in Sect. 2.4, we show how a PML can be implemented. 

To describe the main features of the UWVF, we assume that we have a bounded 

source free domain o ⊂ R
3
., which is Lipschitz and piecewise smooth (it can have 

disconnected boundary components) and hence has unit outward normal ν . almost 

everywhere. In o., the complex time harmonic electric field phasor E. satisfies the 

following time harmonic Maxwell equation: 

.∇ × μ−1∇ × E − κ2eE = 0 in o. (1) 

Here e . is the complex-valued relative electric permittivity, and μ. is the complex-

valued relative magnetic permeability. The wave number is denoted κ = ω
√

e0μ0 . 

where ω . is the angular frequency of the radiation, and (e0, μ0). are the electric 

permittivity and magnetic permeability of free space, respectively. Because of the
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later use of a plane wave Trefftz approximation, e . and μ. must be piecewise constant 

in o.. 

It is convenient for the development of the UWVF to assume the following 

generalized impedance boundary condition on the boundary of o. denoted ∂o.: 

.ν × μ−1∇ × E − iκZET = Q(ν × μ−1∇ × E + iκZET ) + g on ∂o. (2) 

Here ET = ν × (E × ν). is the tangential component of the electric field on ∂o.. In  

addition, Q is a complex scalar valued function on the boundary with |Q| ≤ 1., and 

g ∈ L2
T (∂o). is a given source function. The positive parameter Z . is defined on the 

boundary ∂o., and we take it to be Z = √|μ|/√|e|.. Note that the choice Q = 1. 

corresponds to a PEC-type boundary condition 

. ET = − 1

2iκZ
g.

More generally, if Q /= 1., the boundary condition can be rewritten as 

. ν × μ−1∇ × E − iκZ

l

1 + Q

1 − Q

l

ET = 1

1 − Q
g on ∂o.

Once Z is chosen, the choice of Q can then be used to implement a standard 

impedance boundary condition (Q = 0. and Z = 1. correspond to a low-order 

absorbing boundary condition). The wavenumber κ . is assumed not to be a resonance 

frequency for the problem of solving (1) with boundary conditions (2) so that an 

exact solution exists for the problem provided g ∈ L2
T (∂o).. 

As usual for a discontinuous Galerkin method, the definition of the method 

starts by choosing a finite element mesh denoted Th . of non-intersecting and non-

degenerate geometric elements that cover o. and have maximum element diameter 

h > 0.. The mesh elements must satisfy the geometric constraints from [15], and in 

our work so far, these elements are curvilinear tetrahedra, prisms, or hexahedra (i.e., 

generalizations of the standard elements allowing for curved faces and edges). In the 

remainder of the chapter, K will denote an element in the mesh having boundary ∂K . 

and outward normal νK
.. 

It is important that the functions e . and μ. be constant on each element in the mesh 

but they can vary between different elements. We extend Z to a piecewise constant 

function that is constant on each face in the mesh as follows: if F denotes a face 

shared by elements K and K '
. then we set 

. ̂e =
l

|√e|K e|K ' | on F = K ∩ K ' for K,K ' ∈ Th

|e| on boundary faces,

where |K . denotes the restriction to K . The edge function μ̂. is defined in the same 

way. Then Z =
l

μ̂/
√

ê . on F .
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2.1 Derivation of the UWVF 

We are now in a position to derive the UWVF for Maxwell’s equations (before 

discretization) following [9, 11]. Consider an element K ∈ Th .. Taking the dot 

product of Maxwell’s equations (1) with the complex conjugate of a smooth test 

vector function ξK
. and integrating by parts twice gives 

. 0 =
l

K

(∇ × μ−1∇ × E − κ2eE) · ξK dV

=
l

K

l

(μ−1∇ × E) · ∇ × ξK − κ2eE · ξK
l

dV

+
l

∂K

(νK × μ−1∇ × E) · ξK
T dA

=
l

K

E ·
l

∇ × μ−1∇ × ξK − κ2eξK
l

dV

+
l

∂K

l

(νK × μ−1∇ × E) · ξK
T + νK × E · (μ−1∇ × ξK)T

l

dA = 0,

where wT = (νK × w) × νK
. on ∂K . for any suffiently smooth vector function w.. 

The overline in the above formula denotes complex conjugataion. 

If ξK
. solves the following adjoint Maxwell system in K given by 

.∇ × μ−1∇ × ξK − κ2eξK = 0 in K, (3) 

then we obtain the fundamental identity 

. 

l

∂K

l

(νK × μ−1∇ × E) · ξK
T + νK × E · (μ−1∇ × ξK)T

l

dA = 0.

Using this identity, we can derive the formula that underlies the UWVF. 

Expanding both integral terms on the left hand side, and using the fundamental 

equality shows that 

. 

l

∂K

1

Z

l

νK × μ−1∇ × E + iκZET

l

·
l

νK × μ−1∇ × ξK + iκZξK
T

l

dA

−
l

∂K

1

Z

l

νK × μ−1∇ × E − iκZET

l

·
l

νK × μ−1∇ × ξK − iκZξK
T

l

dA

= −2iκ

l

∂K

l

(νK × μ−1∇ × E) · ξK
T + νK × E · (μ−1∇ × ξK)T

l

dA = 0.

We have thus proved next equality (see [9, Theorem 13, page 97]) that underlies the 

UWVF:
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. 

l

∂K

1

Z

l

νK × μ−1∇ × E + iκZET

l

·
l

νK × μ−1∇ × ξK + iκZξK
T

l

dA

(4) 

=
l

∂K 

1 

Z

l

νK × μ−1∇ ×  E − iκZET

l

·
l

νK × μ−1∇ ×  ξK − iκZξK 

T

l

dA. 

The faces of an element K in the mesh will either be shared with a neighboring 

element or be on the boundary ∂o.. For a face shared with and element K '
. having 

field E' = E|K ' . we have, by the transmission conditions for Maxwell’s equations 

across a surface, 

. ET = E'
T and νK × μ−1∇ × E = −νK ' × μ−1∇ × E',

where we used νK = −νK '
.. Thus 

. νK × μ−1∇ × E − iκZET = −
l

νK ' × μ−1∇ × E' + iκZE'
T

l

on K ∩ K '.

This equality is used to couple fields on adjacent elements via the right-hand side 

of (4) . For faces on ∂o., the boundary condition (2) can be used to replace the same 

term for faces on ∂o.. 

We obtain 

.

l

∂K

1

Z

l

νK × μ−1∇ × E + iκZET

l

·
l

νK × μ−1∇ × ξ + iκZξT

l

dA (5) 

=
7

K ' /=K

l

∂K∩∂K '

−1 

Z

l

νK ' × μ−1∇ ×  E' + iκZE'
T

l

·
l

νK × μ−1∇ × ξ − iκZξT

l

dA 

+
l

∂K∩r

1 

Z

l

Q
l

νK × μ−1∇ ×  E + iκZET

l

+ g
l

·
l

νK × μ−1∇ × ξ − iκZξT

l

dA. 

This can be simplified by defining the boundary quantities 

. XK = νK × μ−1∇ × E|K + iκZ(E|K)T on ∂K,

YK = νK × μ−1∇ × ξK + iκZξK
T on ∂K,

for each element K in the mesh. 

One more component is needed to complete a more concise statement of the 

UWVF. Cessenat [9] defines the operator FK : L2
T (∂K) → L2

T (∂K). by setting
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. FKYK = νK × μ−1∇ × ξK − iκZξK
T .

Now we can now use the aforementioned notation to rewrite equation (5). For each 

element K in the mesh, the unknown boundary flux XK ∈ L2
T (∂K). satisfies 

. 

l

∂K

1

Z
XK ·YK dA =

7

K ' /=K

l

∂K∩∂K '

1

Z
XK ' · FKYK dA

+
l

∂K∩r

1

Z
[QXK + g] · FKYK dA, (6) 

for all test functions YK ∈ L2
T (∂K).. This is the UWVF before discretization. Note 

that equation (6) holds element by element in the mesh. 

If e . and μ. are real, ξK
. and E. both satisfy Maxwell’s equations (1) element by 

element. In that case, we can take ξK = E. in (4) to obtain the following 

. llXKll2,∂K = llFKXKll2,∂K for all XK ∈ L2
T (∂K).

This shows that FK . is an isometry. Using this fact, Cessenat [9] proves that, provided 

the non-resonance condition holds, the UWVF system (6) has a unique solution. 

This fact can also be proved using the equivalent Trefftz-DG scheme. 

2.2 The Plane Wave Basis 

To obtain a computable scheme, it is necessary to discretize the fields XK . and YK . 

on the boundary of each element K ∈ Th .. The key issue is that, given a discrete 

boundary fieldYK ., we need to be able to compute FKYK .. To do this, we have used 

the method proposed by Cessenat [9]: an indirect discretization of LT (∂K). using 

the traces of plane waves defined on the interior of K . 

To be more precise, we enumerate the elements in Th . as K1,K2, . . . , KN .. Then 

for the kth element in the mesh Kk . let pk .denote the number of plane wave directions 

on this element. Let dk,l, l = 1, . . . , pk . denote linearly independent unit vectors 

giving the directions of the plane wave in Kk .. Since ξK
. needs to satisfy the adjoint 

Maxwell system, the plane wave functions can be chosen as 

. ξ k,l,m = Ak,l,meiκ
√

ekμkdk,l·(x−xk,0)

for m = 1, 2., l = 1, . . . , pk .. Here  xk,0 . is the centroid of the element Kk ., the  

polarization vectors Ak,l,m . are such that Ak,l,1 /= 0., Ak,l,1 · dk,l = 0. and Ak,l,2 =
dk,l × Ak,l,1 .. Using the definition of YK ., we then define test functions on ∂Kk . by 

.Yk,l,m = νK × μ−1∇ × ξ k,l,m + iκZξ k,l,m,T .
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We can now create a discrete space of functions on ∂K .: 

.Wk,pk
= span{Yk,l,m | m = 1, 2 and l = 1, . . . , pk}. (7) 

Thus, element by element, XKk
. is approximated by 

.Xk,h =
2

7

m=1

pk
7

l=1

xk,l,mYk,l,m, (8) 

where {xk,l,m}. for m = 1, 2. and l = 1, . . . , pk . are the unknown degrees of freedom 

(DoF) to be computed. Each geometric element is associated with 2pk . DoF, and the 

total number of unknowns for the problem is then Ntot = 2
EN

k=1 pk .. 

In our code, for each pk ., the directions dk,l ., l = 1, . . . , pk . are chosen to be 

the Hammersley points on the unit sphere (with pk . from 4 to 1,200) [21]. We shall 

discuss more the choice of pk . in Sect. 3.1 

The DoFs are computed by substituting the expression (8) for  Xk,h . in Eq. (6) and 

testing with functions YK . from the spanning set for Wk,pk
. defined in (7). Then the 

resulting sparse linear system is solved by BiCG. 

Other choices of Trefftz functions are possible. For example, we could choose the 

spherical vector wave functions (see [22, Theorem 6.26]) or the Method of Auxiliary 

Sources element by element. Both these choices would require the use of numerical 

quadrature on all faces in the mesh, whereas for plane waves, the integrals can be 

computed exactly in closed form for flet facets. 

2.3 The Discrete UWVF, Conditioning and Accuracy 

To obtain a matrix problem, we can list all the Ntot . DoF in a vector denoted -X ∈
C

Ntot . as follows. On each element Kk ., we enumerate the local basis functions on 

∂Kk ., k = 1, . . . , N . so thatYk,l,m . is the (2(l−1)+m).th local basis function. These 

local basis functions can then be ordered element by element. Using the global DoF 

vector, we then write the discrete equations based on (6) as  

.(D + C) -X = -g, (9) 

where D is the Ntot × Ntot . matrix corresponding to the left-hand side of Eq. (6). 

In particular, because of the ordering of the DoF, D is block diagonal, with each 

diagonal block being a 2pk × 2pk . matrix for k = 1, . . . , N .. The  kth diagonal block 

denoted Dk
. is given by 

.Dk
2(l−1)+m,2(r−1)+s =

l

∂Kk

1

Z
Yk,l,m ·Yk,r,s dA, (10)
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for m, r = 1, 2. and l, s = 1, . . . , pk .. This matrix is Hermitian and positive definite. 

The matrix C encodes the remaining sesquilinear forms in (6), while the vector 

-g ∈ C
Ntot . is given by the data term in (6) in the obvious way. 

Since D is block diagonal, we can easily invert D and rewrite (9) as  

.(I + D−1C) -X = D−1 -g. (11) 

This is the matrix system solved in ParMax. Note that in assembling D and C, only 

integrals on faces in the mesh need to be performed. Furthermore, on flat triangular 

facets, the integrals can be computed analytically [9], which speeds up assembly. 

On curved elements, numerical quadrature must be used. 

Matrices from the UWVF are sparse but can be very ill-conditioned if pk . is too 

large or if elements have a large aspect ratio [23]. Thus, in ParMax, it is important 

that the number of basis plane wave directions pk . can vary from element to element 

in order to control ill-conditioning. 

A particularly attractive feature of the discrete UWVF is that the simple 

BiConjugate-Gradient (BiCG) method can be used to solve the system (11) provided 

the condition number of the overall system is not too large. We control the global 

condition number by controlling the local condition number of the diagonal blocks 

of D by the choice of pk . [15]. As we shall see in the next section, this is 

accomplished by using a heuristic expression for pk . in terms of the size of Kk . 

(other techniques are discussed in [15]). The MPI-parallel implementation of BiCG 

is relatively straightforward since it requires just parallel matrix multiplication, and 

the fact that elements only communicate via faces also improves parallel efficiency. 

Of course, our strategy is not the only way to control conditioning. In [23] and 

[24], it is suggested to use a local SVD of Dk . to construct basis vectors as sums of 

plane waves by controlling the local condition number. An interesting alternative is 

to use evanescent plane waves to control both conditioning and accuracy [25]. This 

certainly requires study in the context of Maxwell’s equations. 

2.4 Scattering Calculations: Inclusion of the PML 

The examples in Sects. 4 and 5 are for scattering calculations. In this section, we 

describe how we perform these simulations and in particular describe how we 

implement the PML in the current version of ParMax. We assume that we have 

a bounded scatterer, which can be impenetrable (for example, with an impedance 

or PEC boundary condition) or penetrable (for example, a dielectric) occupying a 

domain S ⊂ R
3
.. A known incident field Ei

. impinges on the scatterer and creates an 

outgoing scattered field Es
. (see for example [22]). Then the total field E = Ei +Es

. 

satisfies the homogeneous Maxwell system (1). The incident field Ei
. is assumed to 

satisfy the background Maxwell’s equations in the neighborhood of S: 

.∇ × ∇ × Ei − κ2Ei = 0.
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Fig. 1 A cartoon of a cross section of the geometric domains used when simulating electromag-

netic scattering. The bounded scatterer S (green) is in the interior of an artificial boundary (shown 

in gray) separating zones in which the scattered field or total field is used. The PML occupies the 

outer rectilinear annular region (red) 

An important example is the incident plane wave Ei = Ei
0 exp(iκd ·x). where the 

real direction vector d. satisfies lldll = 1. and the real polarization Ei
0 /= 0. is such 

that Ei
0 ·d = 0.. The polarization and direction of propagation of this plane wave are 

independent from the directions and polarizations used in the discrete UWVF. 

We then select a bounded computational domain o. containing the scatterer S in 

its interior. We can use a simple absorbing boundary condition (Q = 0. in (2)) on the 

outer boundary, but this requires a large computational domain to achieve accuracy. 

Often a better approach is to use a PML. In this case, for ParMax, the outer boundary 

of o. must be a box with sides parallel to the coordinate axes. We can then choose a 

rectilinear annulus in o. of thickness δPML > 0. where we impose the PML to absorb 

the scattered field. A cartoon of this geometry is shown in Fig. 1. 

Since the UWVF does not easily handle distributed current sources, one more 

surface needs to be defined in the grid. We choose an artificial surface in o. but not 

in the PML that contains the scatterer in its interior (see the gray sphere in Fig. 1 

(left)). This surface need not be a sphere and is just required to contain the scatterers 

in its interior (the surface can be multiply connected if the scatterer is multiply 

connected). Outside this artificial interface, we compute with the scatterered field 

Es
. as needed by the PML. Inside the surface we compute with the total field E.. The  

incident wave is imposed via transmission data on the artificial interface surface (see 

[11] for the definition of g. on the interface). 

Next we describe how the PML is included in the current version of ParMax. 

Previous versions used the implementation describe in [15]. The slightly modified 

version here provides better absorption. We use the complex stretching approach to



404 T. Lähivaara et al.

the PML of Chew and Wheedon [26]. We note that in ParMax we assume e = μ = 1. 

in the PML. 

For simplicity, we only give details of the construction of the PML in the positive 

orthant. Suppose the PML starts at x = a1 > 0. in the direction x > 0., at  a2 > 0. 

in the y direction and a3 > 0. in the z direction. We then consider the complex 

stretched coordinate 

. x̂j = xj +
l xj

aj

iσ PML
j (s)

κ
ds for j = 1, 2, 3.

The real absorption parameters satisfies σ PML
j (s) > 0. in the PML. Often σ PML

j (s). 

is chosen to be an increasing function of s, but because we need plane waves to 

incorporate into the UWVF, we assume 

. σ PML
j (s) =

l

σj if s > aj

0 otherwise
.

where σj . is a positive constant. Assuming xj ≥ 0. for j = 1, 2, 3. 

.
dx̂j

dxj

= 1 +
iσ PML

j (s)

κ
:= γj . (12) 

Note that γj . is piecewise constant in the PML. 

Formally, we assume that the Maxwell system is satisfied in the stretched 

coordinates x̂. so that 

. ∇̂ × ∇̂ × Ê − κ2Ê = 0 in the PML.

Then we define EPML = DÊ. where the matrix D. is given by 

. D =

⎛

⎝

γ1 0 0

0 γ2 0

0 0 γ3

⎞

⎠ .

Transforming back to real spatial coordinates using (12), we obtain a standard 

Maxwell system (but with anisotropic coefficients) for w.: 

.∇ ×
l

μ−1
PML∇ × EPML

l

− κ2ePMLEPML = 0, (13) 

where ePML = μPML . and
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. ePML =

⎛

⎜

⎝

γ2γ3

γ1
0

0
γ1γ3

γ2
0

0 0
γ1γ2

γ3

⎞

⎟

⎠
.

We need to find plane wave solutions of (13), and this is where we use the 

assumption that γj . is constant on each element. 

On an element K in the PML, we consider plane waves wPW . of the form 

. wPW (x) = EPML
0 exp(iκdPML ·D(x − x0)),

where x0 . is the centroid in the element K , EPML
0 . is a constant polarization, and dPML . 

is a unit direction vector (to be chosen as in Sect. 2.2). Then: 

. ∇ × μ−1∇ × wPW

= −κ2(DdPML) × μ−1((DdPML) × EPML
0 ) exp(iκdPML ·D(x − c)).

So, for wPW . to satisfy (13) we need to find eigenpairs (η,EPML
0 ). such that 

.(DdPML) × μ−1
PML(DdPML × EPML

0 ) = −ηePMLE
PML
0 . (14) 

and, to be successful, we must have η = 1. as the eigenvalue. 

If we define 

. C =

⎛

⎝

0 −γ3dPML,3 γ2dPML,2

γ3dPML,3 0 −γ1dPML,1

−γ2dPML,2 γ1dPML,1 0

⎞

⎠ .

Then (DdPML) × EPML
0 = CEPML

0 . and the eigenvalue problem is 

. Cμ−1
PMLCE

PML
0 = −ηePMLE

PML
0 .

Choosing 

. dPML =

⎛

⎝

sin(φ) cos(θ)

sin(φ) sin(θ)

cos(φ)

⎞

⎠ ,

where (θ, φ). are polar angles, we obtain the following eigenvalues and eigenfunc-

tions thanks to the computer algebra system Maple 

.η = 0, EPML
0,1 = CdPML,
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. η = 1, EPML
0,2 =

⎛

⎝

γ1 cos(φ)

0

−γ3 cos(θ) sin(φ)

⎞

⎠ ,

. η = 1, EPML
0,3 =

⎛

⎝

γ1 sin(θ) sin(φ)

−γ2 cos(θ) sin(φ)

0

⎞

⎠ = sin(φ)

⎛

⎝

γ1 sin(θ)

−γ2 cos(θ)

0

⎞

⎠ .

We reject the η = 0. eigenvalue/eigenvector pair and use the remaining two 

polarizations. We see that 

. wPW (x) = DÊ0 exp(iκdPML ·D(x − c)),

where Ê0 . is a standard polarization orthogonal to dPML .. 

Note the new polarizations EPML
0 . are not mutually orthogonal, but they are 

linearly independent. 

We can also check the divergence-free condition 

. ∇ · (ePMLwPW ) = iκ(DdPML) · (ePMLE
PML
0 ) exp(iκdPML ·D(x − c))

and, using the definitions of D. and ePML . together with the fact that Ê0 . is orthogonal 

to dPML ., we have:  

. (DdPML) · ePMLE
PML
0 = dPML · (DePMLD)Ê0 = 0.

In the UWVF, we actually need plane wave solutions of the adjoint Maxwell 

problem (see (3)) for the UWVF. That is, plane wave functions ξPML . that satisfy 

. ∇ ×
l

μ−1
PML∇ × ξPML

l

− κ2ePMLξPML = 0.

So we use the solution obtained earlier but with conjugated coefficients: 

. ξPW = DÊ0 exp(iκdPML ·D(x − c)).

The PML is not the only way to improve on the lower-order absorbing boundary 

condition inherent in the UWVF. In [27], the authors use an overlapping strategy 

whereby the scattered field is approximated using a boundary integral representation 

on the surface of the scatterer, and this is matched to the UWVF solution on 

the exterior of o. away from the surface of the scatterer. The problem can be 

solved iteratively using successive UWVF solutions and multipole evaluations of 

the integral operator. Since the integral operator is evaluated away from the surface 

where it is defined, near interactions are avoided and the fast multipole method is 

much simpler. The method is efficient for impenetrable scatterers since the outer
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boundary of o. needs only be a few elements from the scatterer. The method can 

be used for penetrable scatterers, but there the memory advantage is less since the 

interior of the scatterer needs to be meshed. For this reason, we use the PML here. 

3 A New Element Type: Pyramids 

In [11], we demonstrated that multiple mesh element types including tetrahedral, 

hexahedral, and prismoidal elements are useful when discretizing a scattering 

problem. One element type was missing in that report: pyramidal elements (see 

Fig. 2 right panel). These are useful when transitioning between regions filled with 

hexahedra and regions filled with tetrahedra. We now indicate how this element can 

be added to ParMax. First, by dividing the base of the pyramid into two subtriangles, 

we can accomplish all necessary integrals during matrix assembly by using the 

existing methods in ParMax for evaluating integrals on triangles. In fact, this is 

how all integrals on faces of geometric elements are implemented. 

3.1 Plane Wave Selection for Pyramidal Elements 

A key issue is the choice of the number of directions p for a pyramid element. 

In [28], we noted that the conditioning of the overall matrix (D + C). can be 

estimated using the diagonal block of D, and this allowed us to suggest a heuristic 

for choosing the number of directions per element as follows. Because the blocks 

are independent, the problem then reduces to choosing p on each element to control 

the local condition number, which we do as follows. 

We choose a reference element (in this case the pyramid with four base vertices 

(±1,±1, 0). and the vertex (0, 0, 1).). Then for different target choices of the 

maximum condition number of Dk . for that element, we can find the choice of p 

that gives a condition number just below this target condition number. This can 

be done for a range of scaled wave numbers κelh. where h is defined as the mean 

distance of the element’s vertices from its centroid, and κel . is defined locally on the 

element by κel = ω
√|eμ|.. We are particularly interested when κelh. is large, which 

corresponds to elements that are a multiple of the local wavelength in diameter. 

Following [11], in Fig. 2, the number of plane waves p found for given choices 

of the desired condition number is plotted as a function of κelh.. In particular, we 

choose the maximum condition number of the matrix blocks of Dk . to be limited by 

the tolerances 105
., 107

., or  109
.. 

For use in ParMax, this data are fitted by a quadratic polynomial in κelh. together 

with the constraint that the polynomial gives at least four directions even on the 

finest grid so we choose the coefficients a, b, and c in 

.p =
l

a (κelh)2 + b (κelh) + c
l

(15)
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Fig. 2 Left: The number of directions p as a function of κelh. where the basis dimension is chosen 

by constraining the maximum condition number of D on the reference element to be respectively 

105
., 107

. or 109
.. Right: the pyramidal reference element 

Table 1 Parameters for the 

polynomial (15) predicting  

the number of directions for 

the pyramidal reference 

element 

max(cond( Dk .)) a b c 

1e5 0.3854 8.0358 4.0000 

1e7 0.4237 11.4219 5.5439 

1e9 0.4526 14.7671 11.4419 

to fit the data. Results of this fitting are shown in Table 1. This polynomial is used 

in ParMax to set the local number of directions pk . on elements Kk ., k = 1, . . . , N . 

that are pyramids. 

Despite the fact that the number of plane wave directions is computed using just 

one reference element, we find that the aforementioned formula gives a number 

of directions that effectively controls the global condition number while providing 

good accuracy (the accuracy of the plane wave approximation increases with the 

number of directions). Effectively we are asking for the best accuracy given a 

specified condition number. A more advanced choice might estimate p by including 

more geometric information from a range of element shapes, but this would be more 

costly. No attempt is made to align the directions of the plane waves with features 

of the scattering solution (cf. [17]). 

3.2 Hybrid Elements 

The calculation of the entries of Dk
. on element Kk ., k = 1, . . . , N . as well as the 

entries of C are computed by dividing the (possibly curvilinear) faces of Kk . into 

triangular (or curvilinear triangular) patches. For example, in the case of the cube, 

each face is subdivided into two triangles. Then, if a triangular facet is planar, we 

compute the entries analytically or else, when the facets are curvilinear, we use 

quadrature as described in [11]. 

As an example of the use of multiple element types, we show results for a very 

simple test problem on the cube [−1.5, 1.5]3
. using as exact solution a plane wave 

not in the direction of any plane wave in the basis. The frequency is 1 GHz and 

the boundary condition is set using Q = 0.. Three meshes are considered, one is a
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Fig. 3 Cross sections of the computational meshes used in the hybrid mesh numerical experiment: 

Left: mesh 1 consists solely of tetrahedral elements. Middle: mesh 2 consists solely of hexahedral 

elements. Right: mesh 3 comprises hexahedral, tetrahedral, and pyramid elements. The colorbar 

indicates the number of directions for the plane waves in the elements 

Table 2 The table summarizes results for the cube test problem using the meshes in Fig. 3. For  

each mesh we list the number of elements for different element types, number of vertices, and 

minimum and maximum distance between vertices, and percentage relative L2
. error 

Relative 

mesh N tetra
elements . N

pyramid

elements . Nhexa
elements . Nvertices . hmin . (m) hmax . (m) L2

. error ( %.) 

1 384 0 0 125 0.75 1.30 0.11 

2 0 0 64 125 0.75 1.30 0.15 

3 8 14 61 128 0.65 1.30 0.15 

pure tetrahedral mesh (mesh 1), the second a pure hexahedral mesh (mesh 2), and 

the third (mesh 3) has an L-shaped inclusion filled with tetrahedral elements, which 

are then converted to hexahedral elements using pyramid elements. In all cases, 

e = μ = 1.. Cross sections of the meshes are shown in Fig. 3. 

Results are summarized in Table 2. The results indicate that the numerical 

accuracy is comparable across all mesh configurations. This suggests that we can 

use hybrid grids without a large adverse impact on accuracy. 

4 Approximation of Smooth Surfaces 

A Trefftz method simplifies fitting a curved boundary compared to the finite element 

method. The approximation theory for plane waves described in [15] holds for 

curvilinear elements (provided some nonrestrictive geometric conditions hold). It 

is then a matter of computing the contributions to the matrices D ad C (see for 

example (10)) by computing integrals face by face.
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Consider a face F in the mesh, then F is the image of a smooth invertible map 

GF : F̂ → F . from the reference triangle F̂ ⊂ R
2
. with vertices (0,0), (1,0), (0,1) to 

F . If  GF . is known exactly, it can be used, but in general we approximate GF . using 

a vector polynomial Gq,F . of degree q on the reference element. This polynomial 

is defined by interpolating GF ., and for simplicity, we use the standard Lagrange 

interpolation points on F . 

Using Gq,F . we have an approximation to F given by Gq,F (F̂ )., and we use this 

approximate curvilinear facet to compute the necessary integrals on the faces of an 

element using numerical quadrature. Currently, we do not have a sophisticated way 

of choosing the order of quadrature on each face, instead opting for a dense set of 

quadrature points. Optimization of the quadrature scheme in terms of the number 

of quadrature points to obtain a given accuracy would improve efficiency of matrix 

assembly. 

4.1 Scattering from a PEC Sphere 

In [11], we studied the dependence of the Radar Cross Section (RCS) computed 

from the far field pattern of the wave scattered by a PEC sphere of radius 1m at the 

frequency 2.0 GHz. This was studied for the surface approximation with q = 1, 2. 

(obviously q = 1. is the case when the surface of the sphere is approximated by flat 

facets). In that paper, we observed a marked improvement in accuracy comparing 

q = 1. and q = 2., which allowed us to increase the mesh size relative to the 

wavelength of the incident wave on the surface of the scatterer when q = 2.. Hence, 

we can compute the solution more rapidly for a given desired accuracy. 

Interestingly, as we shall see, the case q = 3. does not produce an improved 

RCS compared to q = 2.. In order to investigate this further, we also implemented a 

quartic (q = 4.) approximation of the curvilinear facets, and tested the accuracy of 

ParMax using different surface grids and q = 1, 2, 3, 4.. 

For these tests, the incident electric field is a plane wave propagating in the 

direction of the positive x .-axis, and the field is polarized in the y .-direction. The 

frequency of the incident field is f = 2.0.GHz. The propagation medium is assumed 

to be a vacuum, and the PML (thickness δPML . of 5λ0 .) is set to a minimum distance 

of 3λ0 . from the PEC sphere. In the PML, we use hexahedral elements, while the 

vacuum is filled with tetrahedral and pyramid elements. 

We tested eight configurations for the computational grids. Figure 4 shows the 

surface triangulations for the PEC sphere, ranging from a very sparse to a highly 

dense grid, see Table 3 for details. For each surface triangulation, we request 

COMSOL Multiphysics to build a grid of o. with a suggested grid size of 5λ0 . 

where λ0 . is the wavelength of the radiation in the air away from the sphere. We use 

the same PML and outer boundary condition for each test case. We then compute 

the scattered field using surface approximations with degree q = 1, 2, 3, 4.. From  

the scattered field, the RCS is computed for directions that are defined by the the



UWVF: A Trefftz Numerical Method for Maxwell’s Equations 411

Table 3 This table provides details of the computational grids used for the scattering from the 

PEC sphere case 

Mesh N tetra
elements . N

pyramid

elements . Nhexa
elements . Nvertices . hmin . (cm) hmax . (m) 

1 357 96 152 374 32.51 1.30 

2 383 96 152 385 35.13 1.30 

3 571 96 152 430 22.59 1.30 

4 870 96 152 505 9.90 1.30 

5 827 96 152 499 16.44 1.30 

6 1474 96 152 638 7.09 1.30 

7 1670 96 152 702 8.46 1.30 

8 24,868 96 152 8023 0.94 1.30 

Fig. 4 Surface triangulations used for testing the effects of different surface approximations for 

the PEC sphere 

azimuth angle φ . ( ◦ .) as (cos(φπ/180), sin(φπ/180), 0).. The Mie series is used to 

compute a reference exact value (c.f. [29]). 

Figure 5 shows the relative L2
. error in the bistatic RCS as a function of surface 

grid density (for the surface grids in Fig. 4) for different curved elements (using 

q = 1, 2, 3, 4.). Several observations can be made from the results:

• As expected from our results in [11], when using flat elements good numerical 

accuracy is obtained only for the densest surface grid in which the flat facets 

approximate the curved surface sufficiently well. Of course, this dense surface 

grid causes a denser volume grid near the PEC surface and hence more DoF for 

the problem.

• Quadratic and cubic surface approximations lead to comparable numerical 

accuracy except on the coarsest grid, and hence, the motivation of using cubic 

surfaces is limited in this case.
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Fig. 5 Relative error in the bistatic RCS as a function of element size normalized against 

wavelength λ0 . in vacuum for different surface meshes (see Fig. 4) and order q of the curved surface 

elements

• Interestingly, the quartic (q = 4.) surface approximation leads to good numerical 

accuracy for more sparse surface representations (except on the coarsest surface 

grid). Hence, the use of quartic surfaces is justified and provides a useful add-on 

to the software. 

We conjecture that the small difference between the relative error when using 

quadratic q = 2. and cubic q = 3. surface representations is due to the symmetry of 

the spherical scatterer. Suppose a surface element has its centroid at x = 0, y = 0. 

and let z =
l

1 − x2 − y2 . (by rotating the coordinate system, this is possible for 

any surface face). Then for small x and y, the Maclaurin series of z in (x, y). is 

. z = 1 − x2

2
− x4

8
+

l

−1

2
− 1

4
x2 − 3

16
x4

l

y2 +
l

−1

8
− 3

16
x2 − 15

64
x4

l

y4

+ O
l

x6 + y6
l

.

Notice that cubic terms are not present in this series. Thus, for a small facet with 

centroid at x = y = 0., we expect the cubic terms in the interpolating function Gq,F . 

to be small for q = 3.. As a result, the q = 3. fit should not give markedly different 

results compared to the q = 2. case until the surface elements get large. This is 

seen in Fig. 5, where the accuracy for q = 2. and q = 3. is comparable until the 

largest surface element size. However, the quartic (q = 4.) surface approximation is 

expected to improve the surface fit (quartic terms do not vanish in the above series), 

and this explains why the quartic approximation improves over the quadratic or 

cubic cases for larger surface element size. 

A further remark is that for small surface element size, the use of q = 2, 3, 4. 

gives similar error. Most likely this reflects the limits on accuracy imposed by the 

discretization errors due to the volume plane wave discretization away from the 

sphere and the choice of PML (both of which are unchanged as we vary q).
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4.2 Penetrable Dielectric Sphere 

In [11], we also considered scattering from a dielectric sphere. In this case, the 

electromagnetic wave enters the sphere, which is now termed penetrable. In this 

numerical experiment, a penetrable sphere with a radius of 1 meter is centered at the 

origin inside a cube defined by [−1−10λ0, 1+10λ0]3
., where λ0 . is the wavelength in 

vacuum. For the sphere, we assume a relative permittivity of e = 2.5. and a relative 

permeability of μ = 1.. The surrounding medium is vacuum. The incident field has 

a frequency of f = 2.GHz, and a PML with a thickness of 5λ0 . is applied on each 

side of the cube. 

An artificial spherical boundary with a radius of 1+λ0 . is employed to distinguish 

the scattered field region outside the artificial boundary from the region inside the 

artificial boundary where the total field is used instead. The scattered-total field 

formulation described in [11] is utilized to introduce a source on this artificial 

boundary. This artificial boundary was also used to compute the far-field pattern 

using surface integrals [22]. 

We utilised quartic curved elements (q = 4.) and a mesh size parameter of 5λs . 

in the volume, where λs . is the local wavelength. Figure 6 shows cross section 

of the computational grid, which uses the tetrahedral, hexahedral, and pyramidal 

element types available in ParMax. In the PML layer, only hexahedral elements are 

used, whereas in and around the scatterer, tetrahedra are used. To connect the two 

mesh regions, pyramid elements are employed. The colorbar on the figure (Fig. 6) 

indicates that 88 ≤ pK ≤ 934. with the maximum number of plane waves used in 

the large hexahedral element in the PML. The grid comprises 150 pyramid elements 

and 2,116 tetrahedral elements. Furthermore, the PML layer is discretized using 218 

hexahedral elements. The entire grid is composed of 791 vertices, with hmin = 0.15. 

m and hmax = 1.30. m. 

Fig. 6 Left: Cross section of the computational grid for the penetrable dielectric sphere. The 

colorbar shows the number of directions pK . used in the elements in the mesh. Right: Surface 

triangulation on the interface between the vacuum and penetrable sphere
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Fig. 7 The left and center panels show snapshots of the electric field R(Ey)., and  F(Ey). on the 

z = 0. plane for the penetrable dielectric sphere. The solid white line shows the material interface, 

and the solid black line marks the artificial interface used to introduce the incident wave. The right 

panel shows an isosurface of llEll. at value 0.5 

Fig. 8 Bistatic RCS for the penetrable dielectric sphere as a function of the azimuthal angle φ . at 

2 GHz 

Rather than repeat the investigation of the effects of surface triangulation and 

surface approximation degree, we perform a single experiment with the quartic 

approximation of the curved surface of the sphere. In Fig. 7 left and center panels, 

we show the total field components R(Ey). and F(Ey). on the z = 0.-plane and in the 

right panel the isosurface llEll. at value 0.5. 

Having computed the near field, we can compute the far field pattern and hence 

the RCS. This is shown in Fig. 8 together with the Mie series result. There is good 

agreement with the Mie series over the entire range of angles. 

5 Numerical Results for a PEC Almond 

In this section, we study scattering from a PEC metallic almond target. The target 

has the same shape as the well-known NASA almond [19], but we compare it to 

published experimental data from [18]. We compare the monostatic RCS, for which
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Table 4 This table provides details of the computational grids used for the almond scatterer 

f (GHz) N tetra
elements . N

pyramid

elements . Nhexa
elements . Nvertices . hmin . (cm) hmax . (m) 

3.5 3326 96 152 950 0.30 0.56 

5.125 4023 96 152 1120 0.27 0.41 

7.0 5231 112 172 1434 0.13 0.30 

10.25 6054 94 150 1617 0.13 0.23 

Fig. 9 Cross sections of the computational grids for the almond shown in Fig. 10. The colorbar 

shows the number of plane wave directions per element 

the radar transmitter and receiver are collocated, to measured data obtained from 

[30]. The RCS is computed from the far-field pattern of the electric field and is 

measured at polar angles φ ∈ [0, 180]◦ .. The geometry of the almond can be seen 

from the surface triangulation plots in Fig. 10. We use  q = 4.. 

The propagation medium is vacuum, and the incoming plane wave is studied 

for frequencies f ∈ [3.5, 5.215, 7.0, 10.25].GHz. The geometry is modeled by 

assuming a minimum distance of 6λ0 . from the almond to the PML. In addition, the 

PML thickness is set to 3λ0 .. 

Grid generation details are given in Table 4, and cross sections of the meshes are 

visualized in Fig. 9 showing the number of plane wave directions on each element. 

We have used hexahedral elements in the PML and curvilinear tetrahedra with q = 4. 

to fit the almond surface. The surface triangulations are shown in Fig. 10 where we 

note that the surface grids have been refined in regions of high curvature. 

The monostatic numerical and experimental values of the RCS for different 

frequencies and polarizations are shown in Fig. 11. The results illustrate that the 

RCS predicted by the UWVF aligns well with the measured data at each of
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Fig. 10 Surface triangulation of the almond geometry at different frequencies 

the frequencies over the whole angle range. This indicates the accuracy of the 

simulation model in capturing the frequency-dependent behavior of the almond 

case. The simulations were conducted for horizontal and vertical polarizations, 

and the results demonstrate a high level of agreement with the measurements in 

each case. This consistency across polarizations further validates the robustness of 

ParMax. 

6 Conclusion 

We have described our efforts to implement a general purpose scattering code 

using Trefftz basis functions via the UWVF. We showed two recent improvements: 

pyramidal elements and quartic boundary surface approximation. The latter was 

shown to allow larger surface mesh sizes on a smooth curved scatterer, and hence, 

good convergence was demonstrated for PEC and dielectric balls. Since spherical 

scatters have constant curvature, they do not offer a challenging test of surface 

approximation. To probe this more, we showed results for an almond-shaped 

scatterer that also has a sharp tip that causes the electromagnetic field to have 

a singularity at the tip. Compared to published measurements of real data, our 

predictions are a good fit. 

The main challenge of this Trefftz method is the rapid rise in the condition 

number of the system as the mesh size h or wave number κ . decreases. We have 

discussed a few ways to help with this problem, but currently make use of a simple 

a priori strategy to choose the number of directions per element. Our next effort will 

be to improve the choice of the element basis based on geometric properties of the 

element.
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Fig. 11 Monostatic RCS for horizontal (left) and vertical (right) polarization for the almond 

from [18] for frequencies f ∈ [3.5, 5.215, 7.0, 10.25].GHz (from top to bottom row). Measured 

data are from [30]. The fidelity of the computational results is similar to published results from 

other software (see for example [31]) 
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The second Weiglhofer Symposium on Electromagnetic Theory concluded with 

a round table discussion on “Future Developments.” The panel featured Ibrahim 

Abdulhalim from the ECE School at Ben Gurion University, Gérard Gouesbet 

from the Institut National des Sciences Appliquées de Rouen, Gerhard Kristensson 

from Lund University, Guy Vandenbosch from Katholieke Universiteit Leuven, and 

Theo Rasing from Radboud University Nijmegen, who also served as the chair. All 

participants in the symposium actively engaged in the discussion. In their open-

ing statements, the panelists highlighted the critical role of Electromagnetism— 

particularly in the fields of Optics and Photonics—in addressing some of today’s 

most pressing societal challenges, including Energy, Climate, and Health. The 

ability to process vast amounts of data rapidly and with significantly improved 

energy efficiency is vital in these areas, and optics is poised to play a central role. 

The exponential rise in energy consumption due to Artificial Intelligence (AI) and 
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the Internet of Things (IoT) demands more energy-efficient Information Technology 

(IT). Light is expected to be crucial not only for the fast and energy-efficient 

transport of data but also for computation itself. Emerging technologies such as 

wave-based and neuromorphic computing with light are promising but require much 

more research. Edge computing, which involves the direct analysis of data from 

numerous sensors, is another area of interest that necessitates the development of 

real-time solutions for inverse problems—a challenge that is not yet fully met and 

requires further research. 

In the context of energy, the development of photon-harvesting technologies, 

whether for direct use or conversion to electricity, will benefit from advances in 

antenna design, particularly in the microwave domain. The expanding use of THz 

sources will also drive research in this area. Light scattering, which enables real-

time data analysis, is a powerful tool for characterizing small particles, which play 

a crucial role in pollution and, consequently, health. 

Beyond these societal issues, the discussion also touched on broader concerns 

closely tied to the future of the field. One key observation was the tendency for 

redundant research efforts—essentially “reinventing the wheel”—due to a lack of 

information sharing. Addressing this issue will require standardized formats for data 

sharing, a challenge that, while complex, should not be an excuse to avoid pursuing 

a solution. Collaboration with industrial partners will also be crucial for addressing 

many of the challenges discussed. However, it was noted that such collaborations are 

often more successful with large industries, which typically have their research labs 

than with small and medium-sized enterprises, which may have the need but lack 

the resources and connections to engage in application-oriented academic research. 

Additionally, fostering better relationships with industry for future developments 

will require an understanding of cultural differences: while industry seeks solutions, 

academia is often focused on exploring problems. Although this seems like an ideal 

match, in practice, it can create significant challenges.
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